PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 79 |

Tytuł artykułu

Influence of herbivory pressure on the growth rate and needle morphology of Taxus baccata L. juveniles

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Damage by herbivore grazing negatively influences the development of subsequent forest generations. Little is known about the long-term impacts of grazing and interactions between grazing and light conditions on sapling growth after the cessation of herbivory impact. In this study, Taxus baccata saplings were grown over a period of four years in artificial shading at 2, 8, 30 and 100% of full sunlight (described as initial light). These saplings were planted in fenced and unfenced plots in a mixed forest in Poland. After six years with no protection from grazing, deer pressure was eliminated by fencing. In this study, we analysed sapling growth and needle morphology five years after deer suppression. Overall, grazing had a negative significant impact on the growth rate and needle morphology of T. baccata saplings. Saplings damaged by herbivores had a height increment approximately one-third that of non-grazed saplings. The grazed yew saplings had a lower needle area and length and a higher specific leaf area (SLA) than non-grazed saplings. Initial and current light conditions did not influence tree growth rates and needle morphology. However, we found positive correlations between sapling height and both leaf area and leaf length and a negative correlation between sapling height and SLA. Browsed yews also had a greater tendency to form polycormic (multi-stemmed) individuals. Lower growth rates, smaller needles and polycormic stems indicate a strategy of “escaping” herbivory pressure even five years after elimination of deer pressure.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Opis fizyczny

p.10–19,fig.,ref.

Twórcy

Bibliografia

  • Ammer C, Vor T, Knoke T & Wagner S (2010) Der wald-wild-konflikt. Analyse und lösungsansätze vor dem hintergrund rechtlicher, ökologischer und ökonomisher zusammenhänge. University of Göttingen, Germany.
  • Augustine DJ & McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. The Journal of Wildlife Management 62: 1165–1183.
  • Bergquist J, Örlander G & Nilsson U (2003) Interactions among forestry regeneration treatments, plant vigour and browsing damage by deer. New Forests 25: 25–40. doi:10.1023/A:1022378908827.
  • Boege K & Marquis RJ (2005) Facing herbivory as you grow up: The ontogeny of resistance in plants. Trends In Ecology & Evolution 20: 441–448. doi:10.1016/j.tree.2005.05.001.
  • Del Tredici P (2001) Sprouting in temperate trees: A morphological and ecological review. The Botanical Review 67: 121–140. doi:10.1007/BF02858075.
  • Devaney JL, Whelan PM & Jansen MAK (2015) Light responses of yew (Taxus baccata L.); does size matter? Trees 29: 109–118. doi:10.1007/s00468-014-1095-x.
  • Dhar A, Ruprecht H, Klumpp R & Vacik H (2007) Comparison of ecological condition and conservation status of English yew population in two Austrian gene conservation forests. Journal of Forestry Research 18: 181–186.
  • Dhar A, Ruprecht H & Vacik H (2008) Population viability risk management (PVRM) for in situ management of endangered tree species-A case study on a Taxus baccata L. population. Forest Ecology and Management 255: 2835–2845.
  • Duncan AJ, Hartley SE & Iason GR (1998) The effect of previous browsing damage on the morphology and chemical composition of Sitka spruce (Picea sitchensis) saplings and on their subsequent susceptibility to browsing by red deer (Cervus elaphus). Forest Ecology and Management 103: 57–67. doi:10.1016/S0378-1127(97)00177-1.
  • Fabjanowski J, Jaworski A & Musiel W (1974) The use of certain morphological features of the fir (Abies alba Mill.) and spruce (Picea abies Link.) in the evaluation of the light requirements and quality of their up-growth (Orig. Poln.). Acta Agraria et Silvestris, Series Silvestris 14: 3–29.
  • Farris E, Fenu G & Bacchetta G (2012) Mediterranean Taxus baccata woodlands in Sardinia: A characterization of the EU priority habitat 9580. Phytocoenologia 41: 231–246. doi:10.1127/0340-269X/2011/0041-0501
  • Farris E & Filigheddu R (2008) Effects of browsing in relation to vegetation cover on common yew (Taxus baccata L.) recruitment in Mediterranean environments. Plant Ecology 199: 309–318.
  • Garbarino M, Weisberg PJ, Bagnara L & Urbinati C (2015) Sex-related spatial segregation along environmental gradients in the dioecious conifer, Taxus baccata. Forest Ecology and Management 358: 122–129. doi:10.1016/j.foreco.2015.09.009.
  • García D, Zamora R, Hódar JA, Goméz JM & Castro J (2000) Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biological Conservation 95: 31–38. doi:10.1016/S0006-3207(00)00016-1.
  • Gill DS, Amthor JS & Bormann FH (1998) Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiology 18: 281–289. doi:10.1093/treephys/18.5.281.
  • Gill RMA & Beardall V (2001) The impact of deer on woodlands: The effects of browsing and seed dispersal on vegetation structure and composition. Forestry 74: 209–218. doi:10.1093/forestry/74.3.209.
  • Harmer R (2001) The effect of plant competition and simulated summer browsing by deer on tree regeneration. Journal of Applied Ecology 38: 1094–1103. doi:10.1046/j.1365-2664.2001.00664.x.
  • Heuze P, Schnitzler A & Klein F (2005) Consequences of increased deer browsing winter on silver fir and spruce regeneration in the Southern Vosges mountains: Implications for forest management. Annals of Forest Science 62: 175–181. doi:10.1051/forest:2005009.
  • Hulme PE (1996) Natural regeneration of yew (Taxus baccata L.): microsite, seed or herbivore limitation? Journal of Ecology 84: 853–861.
  • Iszkuło G (2010) Success and failure of endangered tree species: Low tepmeratures and low light availability affect survival and growth of European yew (Taxus baccata L.) seedlings. Polish Journal of Ecology 58: 259–271.
  • Iszkuło G & Boratyński A (2006) Analysis of the relationship between photosynthetic photon flux density and natural Taxus baccata seedlings occurrence. Acta Oecologica 29: 78–84. doi:10.1016/j.actao.2005.08.001.
  • Iszkuło G, Boratyński A, Didukh Y, Romaschenko K & Pryazhko N (2005) Changes of population structure of Taxus baccata L. during 25 years in protected area (Carpathians, Western Ukraine). Polish Journal of Ecology 53: 13–23.
  • Iszkuło G, Nowak-Dyjeta K & Sekiewicz M (2014) Influence of initial light intensity and deer browsing on Taxus baccata saplings: A six years field study. Dendrobiology 71: 93–99. doi:10.12657/denbio.071.009.
  • Kamler J, Homolka M, Barančeková M & Krojerová-Prokešová J (2010) Reduction of herbivore density as a tool for reduction of herbivore browsing on palatable tree species. European Journal of Forest Research 129: 155–162. doi:10.1007/s10342-009-0309-z.
  • Kartusch B & Richter H (1984) Anatomische Reaktionen von eibennadeln auf eine erschwerung des wassertransports im pflanzenkörper. Phyton (Austria) 24: 295–303.
  • Katsavou I & Ganatsas P (2012) Ecology and conservation status of Taxus baccata population in NE Chalkidiki, northern Greece. Dendrobiology 68: 55–62.
  • Kupferschmid AD, Zimmermann S & Bugmann H (2013) Browsing regime and growth response of naturally regenerated Abies alba saplings along light gradients. Forest Ecology and Management 310: 393–404. doi:10.1016/j.foreco.2013.08.048.
  • Lilles EB, Astrup R, Lefrancois ML & Coates KD (2014) Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance. Tree Physiology 34: 1334–1347. doi:10.1093/treephys/tpu092.
  • Magnuszewski M (2015) Programme of restitution Taxus baccata L . and Sorbus torminalis (L.) Crantz in Polish State Forests: Ex situ conservation of plants – problems and solutions. Conference 9–13 September 2015, Poznań, Poland. https://www.researchgate.net/publication/282317594_Programme_of_restitution_Taxus_baccata_L_and_Sorbus_torminalis_L_Crantz_in_Polish_State_Forests.
  • Messier C, Doucet R, Ruel JC, Claveau Y, Kelly C & Lechowicz MJ (1999) Functional ecology of advance regeneration in relation to light in boreal forests. Canadian Journal of Forest Research 29: 812–823. doi:10.1139/x99-070.
  • Milchunas DG & Noy-Meir I (2002) Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99: 113–130. doi:10.1034/j.1600-0706.2002.990112.x.
  • Mysterud A & Østbye E (2004) Roe deer (Capreolus capreolus) browsing pressure affects yew (Taxus baccata) recruitment within nature reserves in Norway. Biological Conservation 120: 545–548. doi:10.1016/j.biocon.2004.03.027.
  • Niemczyk M, Żółciak A & Wrzesiński P (2015) The influence of stand canopy openness on the growth of common yew (Taxus baccata L.). Forest Research Papers 76: 42–48. doi:10.1515/frp-2015-0004.
  • Peragón JLN, Matías LFB & Simón JP (2015) Restoration of European yew (Taxus baccata L.) in Mediterranean mountains: importance of seedling nursery fertilization and post-planting light levels. Forest Systems 24: e041. doi:10.5424/fs/2015243-07464.
  • Perrin PM & Mitchell FJG (2013) Effects of shade on growth, biomass allocation and leaf morphology in European yew (Taxus baccata L.). European Journal of Forest Research 132: 211–218. doi:10.1007/s10342-012-0668-8.
  • Perrin PM, Kelly DL & Mitchell FJG (2006) Long-term deer exclusion in yew-wood and oakwood habitats in southwest Ireland: Natural regeneration and stand dynamics. Forest Ecology and Management 236: 356–367. doi:10.1016/j.foreco.2006.09.025.
  • Rasmussen HN, Soerensen S & Andersen L (2003) Bud set in Abies nordmanniana Spach. influenced by bud and branch manipulations. Trees – Structure and Function 17: 510–514. doi:10.1007/s00468-003-0268-9.
  • Schirone B, Ferreira RC, Vessella F, Schirone A, Piredda R & Simeone MC (2010) Taxus baccata in the Azores: A relict form at risk of imminent extinction. Biodiversity and Conservation 19: 1547–1565. doi:10.1007/s10531-010-9786-0.
  • Steele MJ, Coutts MP & Yeoman MM (1989) Developmental changes in Sitka spruce as indices of physiological age, I. Changes in needle morphology. New Phytologist 113: 367–375.
  • Svenning JC & Magård E (1999) Population ecology and conservation status of the last natural population of English yew Taxus baccata in Denmark. Biological Conservation 88: 173–182. doi:10.1016/S0006-3207(98)00106-2.
  • Tanentzap AJ, Kirby KJ & Goldberg E (2012) Slow responses of ecosystems to reductions in deer (Cervidae) populations and strategies for achieving recovery. Forest Ecology and Management 264: 159–166. doi:10.1016/j.foreco.2011.10.005.
  • Thomas PA & Polwart A (2003) Taxus baccata L. Journal of Ecology 91: 489–524. doi:10.1046/j.1365-2745.2003.00783.x.
  • Thomas P & Garcia-Marti X (2015) Response of European yews to climate change: a review. Forest Systems 24: eR01. doi: 10.5424/fs/2015243-07465.
  • Thomas SC (2011) Age-related changes in tree growth and functional biology: The role of reproduction: Size- and age-related changes in tree structure and function, Tree Physiology (ed. By FC Meinzer, B Lachenbruch & TE Dawson) Springer, Netherland, pp. 33–64.
  • Uzoh FCC & Oliver WW (2008) Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. Forest Ecology and Management 256: 438–445. doi:10.1016/j.foreco.2008.04.046.
  • Vessella F, Salis A, Sciré M, Piovesa G & Schirone B (2015) Natural regeneration and gender-specific spatial pattern of Taxus baccata in an old-growth population in Foresta Umbra (Italy). Dendrobiology 73: 75–90. doi:10.12657/denbio.073.008.
  • Vessella F, Simeone MC, Fernandes FM, Schirone A, Gomes MP & Schirone B (2013) Morphological and molecular data from Madeira support the persistence of an ancient lineage of Taxus baccata L. in Macaronesia and call for immediate conservation actions. Caryologia 66: 162–177. doi:10.1080/00087114.2013.821842.
  • Vila B, Torre F, Guibal F & Martin JL (2003) Growth change of young Picea sitchensis in response to deer browsing. Forest Ecology and Management 180: 413–424. doi:10.1016/S0378-1127(02)00655-2.
  • Wallgren M, Bergquist J, Bergström R & Eriksson S (2014) Effects of timing, duration, and intensity of simulated browsing on Scots pine growth and stem quality. Scandinavian Journal of Forest Research 29: 734–746. doi:10.1080/02827581.2014.960896.
  • Walters MB & Reich PB (1999) Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143: 143–154. doi:10.1046/j.1469-8137.1999.00425.x.
  • Williams H, Messier C & Kneeshaw DD (1999) Effects of light availability and sapling size on the growth and crown morphology of understory Douglas-fir and lodgepole pine. Canadian Journal of Forest Research 29: 222–231. doi:10.1139/cjfr-29-2-222.
  • Wyka T, Robakowski P & Zytkowiak R (2008) Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynthesis Research 95: 87–99.
  • Zamora R, Gómez JM, Hódar JA, Castro J & García D (2001) Effect of browsing by ungulates on sapling growth of Scots pine in a mediterranean environment: consequences for forest regeneration. Forest Ecology and Management 144: 33–42. doi:10.1016/S0378-1127(00)00362-5.
  • Zheng SX, Ren HY, Lan ZC, Li WH, Wang KB & Bai YF (2010) Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences 7: 1117–1132. doi:10.5194/bgd-6-9945-2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ba799f6d-9be0-428f-90bc-9c1307d58ff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.