PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 77 | 2 |

Tytuł artykułu

Expression and localisation of FSHR, GHR and LHR in different tissues and reproductive organs of female yaks

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: This study aimed to investigate the expression and localisation of follicle stimulating hormone receptor/growth hormone receptor/luteinising hormone receptor (FSHR/GHR/LHR) in different tissues and examine the regulatory effects of FSHR/GHR/LHR in the reproductive organs of female yaks during luteal phase. Materials and methods: The quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry assays were utilised to analyse the expression and localisation of FSHR/GHR/LHR in different tissues on female yaks. Results: The qRT-PCR results showed that the mRNA expressions of FSHR/GHR/ /LHR were significantly different in the non-reproductive organs (p < 0.01); the highest expression level was observed in the kidney, cerebellum and lung, whereas the lower expression level was observed in the liver and spleen. Immunohistochemistry assay results showed that FSHR/GHR/LHR were located in kidney tubules, Purkinje cells, cerebellar medulla, alveolar cells and hepatocytes. In addition, the expression levels of FSHR and GHR were considerably higher than LHR in the reproductive organs of female yaks during luteal phase (p < 0.01). FSHR/GHR/LHR were located in cardiac muscle cells, cerebellar medulla, and theca cell lining of reproductive organs. Furthermore, the expression level of FSHR was higher than those of GHR and LHR in all examined tissues. Conclusions: Therefore, the expression and localisation of FSHR/GHR/LHR possibly helped to evaluate the effects of them in tissue specific expression on female yaks, investigate the function and mechanism of FSHR/GHR/LHR in the reproductive organs of female yaks during luteal phase. (Folia Morphol 2018; 77, 2: 301–309)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Numer

2

Opis fizyczny

p.301–309,fig.,ref.

Twórcy

autor
  • College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
autor
  • College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
autor
  • College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Bibliografia

  • 1. Al-Samerria S, Al-Ali I, McFarlane JR, et al. The impact of passive immunisation against BMPRIB and BMP4 on follicle development and ovulation in mice. Reproduction. 2015; 149(5): 403–411, doi: 10.1530/REP-14-0451, indexed in Pubmed: 25667430.
  • 2. Ayoub MA, Yvinec R, Jégot G, et al. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Mol Cell Endocrinol. 2016; 436: 10–22, doi: 10.1016/j.mce.2016.07.013, indexed in Pubmed: 27424143.
  • 3. Caixeta ES, Ripamonte P, Franco MM, et al. Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus: an approach to identify marker genes for developmental competence. Reprod Fertil Dev. 2009; 21(5): 655–664, doi: 10.1071/RD08201, indexed in Pubmed: 19486602.
  • 4. Du X, Li Q, Pan Z, et al. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction. 2016; 152(2): 161–169, doi: 10.1530/REP15-0517, indexed in Pubmed: 27222597.
  • 5. Goyal S, Aggarwal J, Dubey PK, et al. Expression Analysis of Genes Associated with Prolificacy in FecB Carrier and Noncarrier Indian Sheep. Anim Biotechnol. 2017; 28(3): 220–227, doi: 10.1080/10495398.2016.1262869, indexed in Pubmed: 28075701.
  • 6. Gu W, Yang L, Wang S, et al. Generation and application of a novel InsP(3)R(1) mono-antibody from mouse. J Immunoassay Immunochem. 2015; 36(5): 487–495, doi: 10.1080/15321819.2014.996817, indexed in Pubmed: 25522905.
  • 7. He Y, Yu S, Hu J, et al. Changes in the Anatomic and Microscopic Structure and the Expression of HIF-1a and VEGF of the Yak Heart with Aging and Hypoxia. PLoS One. 2016; 11(2): e0149947, doi: 10.1371/journal.pone.0149947, indexed in Pubmed: 26914488.
  • 8. Huo SD, Chen SE, Long RJ, et al. Protein and mRNA expression of follicle-stimulating hormone receptor and luteinizing hormone receptor during the oestrus in the yak (Bos grunniens). Reprod Domest Anim. 2017; 52(3): 477–482, doi: 10.1111/rda.12936, indexed in Pubmed: 28181328.
  • 9. Jiang Li, Liu J, Sun D, et al. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One. 2010; 5(10): e13661, doi: 10.1371/journal.pone.0013661, indexed in Pubmed: 21048968.
  • 10. Juengel JL, French MC, Quirke LD, et al. Differential expression of CART in ewes with differing ovulation rates. Reproduction. 2017; 153(4): 471–479, doi: 10.1530/REP16-0657, indexed in Pubmed: 28115581.
  • 11. Kareem KY, Loh TC, Foo HL, et al. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Vet Res. 2016; 12(1): 163, doi: 10.1186/s12917-016-0790-9, indexed in Pubmed: 27496016.
  • 12. Kutteyil SS, Kulkarni BJ, Mojidra R, et al. Comparison of marmoset and human FSH using synthetic peptides of the β-subunit L2 loop region and anti-peptide antibodies. J Pept Sci. 2016; 22(6): 397–405, doi: 10.1002/psc.2882, indexed in Pubmed: 27282136.
  • 13. Lei ZM, Toth P, Rao CV, et al. Novel coexpression of human chorionic gonadotropin (hCG)/human luteinizing hormone receptors and their ligand hCG in human fallopian tubes. J Clin Endocrinol Metab. 1993; 77(3): 863–872, doi: 10.1210/jc.77.3.863.
  • 14. Liu J, Boyd CK, Kobayashi Y, et al. A novel phenotype for Laron dwarfism in miniature Bos indicus cattle suggests that the expression of growth hormone receptor 1A in liver is required for normal growth*. Domestic Animal Endocrinology. 1999; 17(4): 421–437, doi: 10.1016/s0739-7240(99)00051-x.
  • 15. Marson EP, Ferraz JBS, Meirelles FV, et al. Effects of polymorphisms of LHR and FSHR genes on sexual precocity in a Bos taurus x Bos indicus beef composite population. Genet Mol Res. 2008; 7(1): 243–251, indexed in Pubmed: 18393228.
  • 16. Ohkubo T, Yano H, Takahashi S, et al. Bos indicus type of growth hormone receptor gene is retained in Japanese Black cattle. J Anim Breed Genet. 2006; 123(6): 410–413, doi: 10.1111/j.1439-0388.2006.00617.x, indexed in Pubmed: 17177699.
  • 17. Parrott J, Doraiswamy V, Kim G, et al. Expression and actions of both the follicle stimulating hormone receptor and the luteinizing hormone receptor in normal ovarian surface epithelium and ovarian cancer. Mol Cell Endocrinol. 2001; 172(1-2): 213–222, doi: 10.1016/s0303-7207(00)00340-3.
  • 18. Qi HL, Li CS, Qian CW, et al. The long noncoding RNA, EGFR-AS1, a target of GHR, increases the expression of EGFR in hepatocellular carcinoma. Tumour Biol. 2016; 37(1): 1079–1089, doi: 10.1007/s13277-015-3887-z, indexed in Pubmed: 26271667.
  • 19. Scarlet D, Walter I, Hlavaty J, et al. Expression and immunolocalisation of follicle-stimulating hormone receptors in gonads of newborn and adult female horses. Reprod Fertil Dev. 2016 [Epub ahead of print]; 28(9): 1340–1348, doi: 10.1071/RD14392, indexed in Pubmed: 25693905.
  • 20. Schneider A, Pfeifer L, Hax L, et al. Insulin-like growth factor and growth hormone receptor in postpartum lactating beef cows. Pesquisa Agropecuária Brasileira. 2010; 45(8): 925–931, doi: 10.1590/s0100-204x2010000800019.
  • 21. Suocheng W, Zhuandi G, Li S, et al. Maturation rates of oocytes and levels of FSHR, LHR and GnRHR of COCs response to FSH concentrations in IVM media for sheep. J Applied Biomed. 2017; 15(3): 180–186, doi: 10.1016/j.jab.2017.01.001.
  • 22. Wang W, Liu S, Li F, et al. Polymorphisms of the Ovine BMPR-IB, BMP-15 and FSHR and Their Associations with Litter Size in Two Chinese Indigenous Sheep Breeds. Int J Mol Sci. 2015; 16(5): 11385–11397, doi: 10.3390/ijms160511385, indexed in Pubmed: 25993301.
  • 23. Wei S, Gong Z, An L, et al. Cloprostenol and pregnant mare serum gonadotropin promote estrus synchronization, uterine development, and follicle-stimulating hormone receptor expression in mice. Genet Mol Res. 2015; 14(2): 7184–7195, doi: 10.4238/2015.June.29.12, indexed in Pubmed: 26125929.
  • 24. Weller M, Fortes M, Porto-Neto L, et al. Candidate gene expression in bos indicus ovarian tissues: prepubertal and postpubertal heifers in diestrus. Frontiers Vet Scien. 2016; 3, doi: 10.3389/fvets.2016.00094.
  • 25. Wiener G, Jianlin H, Ruijun L. The Yak.: FAO Regional Office for Asia and the Pacific Food and Agriculture Organization of the United Nations. Bangkok. Thailand; 2003.
  • 26. Zahmel J, Mundt H, Jewgenow K, et al. Analysis of gene expression in granulosa cells post-maturation to evaluate oocyte culture systems in the domestic cat. Reprod Domest Anim. 2017; 52 Suppl 2: 65–70, doi: 10.1111/rda.12927, indexed in Pubmed: 28120353.
  • 27. Zeng C, Liu Xl, Wang Wm, et al. Characterization of GHRs, IGFs and MSTNs, and analysis of their expression relationships in blunt snout bream, Megalobrama amblycephala. Gene. 2014; 535(2): 239–249, doi: 10.1016/j.gene.2013.11.027.
  • 28. Zheng M, Shi H, Segaloff D, et al. Expression and localization of luteinizing hormone receptor in the female mouse reproductive tract. Biol Reprod. 2001; 64(1): 179–187, doi: 10.1093/biolreprod/64.1.179.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b9d45b6e-54a1-4bc9-bc50-e86730b09041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.