PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |

Tytuł artykułu

Changes in the antioxidative systems of Ocimum basilicum L. (cv. Fine) under different sodium salts

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of different sodium salts on some physiological parameters and antioxidant responses were investigated in a medicinal and aromatic plant, Ocimum basilicum L. (cultivar Fine). Plants were subjected to an equimolar concentration of Na₂SO₄ (25 mM) and NaCl (50 mM) for 15 and 30 days. Growth, oxidative stress parameters [electrolyte leakage, peroxidation, and hydrogen peroxide (H₂O₂) concentration], antioxidant enzyme activities [ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and peroxidases (POD, EC 1.11.1.7)], as well as antioxidant molecules [ascorbate and glutathione] were determined. The two salts affected leaf growth rates to the same extent, after 15 or 30 days of treatment, indicating a similar effect of Na₂SO₄ and NaCl salinity on growth, even if different (enzymatic and non-enzymatic) antioxidant mechanisms were involved in H₂O₂ detoxification. However, under both salts, the efficiency of the antioxidant metabolism seemed to be sufficient to avoid the deleterious effects of reactive oxygen species (ROS). Indeed, both ion leakage and peroxidation did not change under either Na₂SO₄ or NaCl salinity. As a whole, these data suggest that a cooperative process between the antioxidant systems is important for the tolerance of Ocimum basilicum L., cv. Fine to Na₂SO₄ and NaCl salinity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

5

Opis fizyczny

p.1873-1881,fig.,ref.

Twórcy

autor
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Dipartimento di Biologia delle Pinate Agrarie, Universita di Pisa, Pisa, Italy
autor
  • Dipartimento di Biologia delle Pinate Agrarie, Universita di Pisa, Pisa, Italy
autor
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
  • Dipartimento di Biologia delle Pinate Agrarie, Universita di Pisa, Pisa, Italy
autor
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

Bibliografia

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signalling in plants. J Plant Biol 51:167–173
  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233
  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341
  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555
  • Anderson JV, Chevone BI, Hess JL (1992) Seasonal variation in the antioxidant system of eastern white pine needles. Plant Physiol 98:501–508
  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50:601–639
  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396
  • Attia H, Ouhibi C, Ellili A, Msilini N, Bouzaien G, Karray N, Lachaâl M (2010) Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiol Plant. Doi: 10.1007/s11738-010-0607-6
  • Cavalcanti FR, Oliveira JTA, Martins MAS, Viegas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in saltstressed cowpea leaves. New Phytol 163:563–571
  • Chaparzadeh N, D’Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F (2004) Antioxidative responses of Calendula Officinalis under salinity conditions. Plant Physiol Biochem 42:695–701
  • Cramer GR, Alberico GJ, Schmidt C (1994) Leaf expansion limits dry matter accumulation of salt-stressed maize. Aust J Plant Physiol 21:663–674
  • D’Amico ML, Izzo R, Tognoni F, Pardossi A, Navari-Izzo F (2003) Application of diluted sea water to soilless culture of tomato (Lycopersicon esculentum Mill.): effects on plant growth, yield, fruit quality and antioxidant capacity. Food Agri Environ 1:112–116
  • Demmig-Adams B, Adams WW III (1994) Light stress and photoprotection related to the xanthophyll cycle. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 105–126
  • Foyer C (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios G (ed) Oxidative stress and the molecular biology of antioxidant defence. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 687–721
  • Frary A, Göl D, Keles D,Ökmen B, Pmar H, Sigva H, Yemenicioğlu A, Doğanlar S (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC. Plant Biol 10–58
  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ 15:381–392
  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714
  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609
  • Hideg E (1999) Free radical production in photosynthesis under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 911–930
  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611
  • Kampfenkel K, Montagu MV, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167
  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113:158–164
  • Lin CC, Kao CH (2002) Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth Regul 37:177–183
  • Manchanda G, Garg N (2008) Salinity and its effect on the functional biology of legumes. Acta Physiol Plant 30:595–618
  • Miller G, Suzuki N, Ciftci-Yilmazi N, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467
  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H₂O₂ signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Noctor G, Arisi ACM, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118:471–482
  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muñoz-Rueda A, Navari- Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO₂. Physiol Plant 135:29–42
  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Mena-Petite A, Navari-Izzo F, Muñoz-Rueda A (2010) Lipoic acid and redox status in barley plants subjected to salinity and elevated CO₂. Physiol Plant 139:256–268
  • Quartacci MF, GlišIč O, Stevanovič B, Navari-Izzo F (2002) Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration. J Exp Bot 53:2159–2166
  • Sgherri CLM, Navari-Izzo F (1995) Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol Plant 93:25–30
  • Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F (1994) Antioxidant system in Sporobolus stapfianus: change in response to desiccation and rehydration. Phytochem 35:561–565
  • Sgherri CLM, Navari-Izzo F, Pardossi A, Soressi GP, Izzo R (2007) The influence of diluted seawater and ripening stage on the content of antioxidants in fruits of different tomato genotypes. J Agri Food Chem 55:2452–2458
  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413
  • Tarchoune I, Sgherri C, Izzo R, Lachaâl M, Ouerghi Z, Navari-Izzo F (2010) Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol Biochem 48:772–777
  • Wang SY, Jiao HJ, Faust M (1991) Changes in ascorbate, glutathione, and related enzymes activities during thidiazuron-induced bud break of apple. Physiol Plant 82:231–236
  • Yasar F, Kusvuran S, Ellialtioglu S (2006) Determination of antioxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. J Hortic Sci Biotech 81:627–630

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b924c0ac-13f0-4a67-9379-d263addf6bc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.