PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 66 | 3 |

Tytuł artykułu

Total and inorganic arsenic in fish, seafood and seaweeds - exposure assessment

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. According to the European Food Safety Authority (EFSA), fish, seafood and seaweeds are foodstuffs that significantly contribute to dietary arsenic intake. With the exception of some algal species, the dominant compounds of arsenic in such food products are the less toxic organic forms. Both the Joint FAO/ WHO Expert Committee on Food Additives (JECFA) and EFSA recommend that speciation studies be performed to determine the different chemical forms in which arsenic is present in food due to the differences in their toxicity. Knowing such compositions can thus enable a complete exposure assessment to be made. Objectives. Determination of total and inorganic arsenic contents in fish, their products, seafood and seaweeds present on the Polish market. This was then followed by an exposure assessment of consumers to inorganic arsenic in these foodstuffs. Materials and Methods. Total and inorganic arsenic was determined in 55 samples of fish, their products, seafood as well as seaweeds available on the market. The analytical method was hydride generation atomic absorption spectrometry (HGAAS), after dry ashing of samples and reduction of arsenic to arsenic hydride using sodium borohydride. In order to isolate only the inorganic forms of arsenic prior to mineralisation, samples were subjected to concentrated HCl hydrolysis, followed by reduction with hydrobromic acid and hydrazine sulphate after which triple chloroform extractions and triple 1M HCl re-extractions were performed. Exposure of adults was estimated in relation to the Benchmark Dose Lower Confidence Limit (BMDL05) as set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) that resulted in a 0.5% increase in lung cancer (3.0 μg/kg body weight (b.w.) per day). Results. Mean total arsenic content from all investigated fish samples was 0.46 mg/kg (90th percentile 0.94 mg/kg), whilst the inorganic arsenic content never exceeded the detection limit of the analytical method used (0.025 mg/kg). In fish products, mean total arsenic concentration was 1.48 mg/kg (90th percentile: 2.42 mg/kg), whilst in seafood they were 0.87 mg/ kg (90th percentile: 2.23 mg/kg), for inorganic arsenic contamination at the 90th percentile was 0.043 mg/kg with most results however being less than 0.025 mg/kg. The highest inorganic arsenic levels were determined in the Hijiki algal species samples (102.7 mg/kg), whereas the other algal samples gave a mean inorganic concentration of 0.41 mg/kg (90th percentile 0.86 mg/kg). The estimated average adults exposure to inorganic arsenic in fish, seafood and seaweeds was less than 0.5% of the lowest BMDL0.5 dose. Only for the Hijiki seaweed it was at 4.9% BMDL0.5. Conclusions. Results demonstrate that dietary arsenic intake from fish, seafood and seaweed along with all their products do not constitute a significant health threat to consumers apart from the seaweed species Hizikia fusiformis in which over 40% of all the inorganic arsenic compounds were found.
PL
Wprowadzenie. Ryby, owoce morza i wodorosty morskie należą do grupy środków spożywczych, które według Europejskiego Urzędu ds. Bezpieczeństwa Żywności (EFSA) mogą wnosić istotny udział do pobrania arsenu z dietą. W tej grupie produktów za wyjątkiem niektórych gatunków glonów, dominującymi formami arsenu są mniej toksyczne organiczne połączenia. Zarówno Połączony Komitet Ekspertów FAO/WHO ds. Substancji Dodatkowych do Żywności (JECFA) jak i EFSA wskazują na celowość prowadzenia badań specjacyjnych pozwalających określić różne formy chemiczne, w jakich arsen występuje w żywności, mając na uwadze duże różnice w ich toksyczności. Poznanie informacji o zawartości poszczególnych związków pozwala na dokonanie pełnej oceny narażenia. Cel badań. Oznaczenie zawartości arsenu całkowitego i nieorganicznego w rybach i ich produktach, owocach morza i wodorostach morskich dostępnych w obrocie handlowym w Polsce oraz ocena narażenia konsumentów na pobranie arsenu nieorganicznego z tymi grupami środków spożywczych. Materiał i metody. Analizie na zawartość arsenu całkowitego i nieorganicznego poddano 55 próbek ryb, ich produktów, owoców morza oraz glonów pochodzących z obrotu handlowego. Zawartości arsenu całkowitego i nieorganicznego oznaczono po suchej mineralizacji próbek metodą absorpcyjnej spektrometrii atomowej z wykorzystaniem generacji wodorków (HGAAS), po uprzedniej redukcji arsenu do arsenowodoru za pomocą borowodorku sodu. W celu wydzielenia nieorganicznych form arsenu próbki przed mineralizacją poddano hydrolizie w środowisku stężonego HCl, a następnie redukcji w obecności kwasu bromowodorowego i siarczanu hydrazyny oraz 3-krotnej ekstrakcji chloroformem i reekstrakcji 1M HCl. Oszacowane narażenie w odniesieniu do osób dorosłych porównano z wartością najniższej dawki wyznaczającej (Benchmark Dose Lower Confidence Limit) BMDL0,5 ustalonej przez The Joint FAO/WHO Expert Committee on Food Additives (JECFA) powodującej 0,5%-owy wzrost zachorowań na raka płuc (3,0 μg/kg m.c./dzień). Wyniki. Średnia zawartość arsenu całkowitego w badanych próbkach ryb wyniosła 0,46 mg/kg (90-ty percentyl: 0,94 mg/kg), natomiast arsenu nieorganicznego nie przekraczała granicy wykrywalności stosowanej metody 0,025 mg/kg. W przypadku przetworów rybnych średnie zanieczyszczenie arsenem wyniosło 1,48 mg/kg (90-ty percentyl: 2,42 mg/kg) natomiast owoców morza odpowiednio: 0,87 mg/kg (90-ty percentyl: 2,23 mg/kg), dla arsenu nieorganicznego 90-ty percentyl 0,043 mg/kg przy większości wyników poniżej 0,025 mg/kg. Najwyższym zanieczyszczeniem arsenem nieorganicznym charakteryzowały się glony z gatunku Hijiki (najwyższa zawartość 102,7 mg/kg), w pozostałych próbkach glonów średnia zawartość arsenu nieorganicznego wynosiła 0,41 mg/kg (90-ty percentyl: 0,86 mg/kg). Oszacowane średnie narażenie na arsen nieorganiczny w odniesieniu do osób dorosłych wyniosło dla ryb, owoców morza i wodorostów poniżej 0,5% wartości najniższej dawki wyznaczającej BMDL0,5. Jedynie w przypadku gatunku Hijiki było ono rzędu 4,9 % BMDL0,5. Wnioski. Na podstawie uzyskanych wyników stwierdzono, że pobranie arsenu w wyniku spożycia ryb, ich produktów, owoców morza, oraz wodorostów morskich nie stanowi istotnego zagrożenia dla zdrowia konsumentów poza gatunkiem Hizikia fusiformis zawierającym ponad 40% połączeń nieorganicznych arsenu.

Wydawca

-

Rocznik

Tom

66

Numer

3

Opis fizyczny

p.203-210,fig.,ref.

Twórcy

autor
  • Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
  • Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
  • Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
  • Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
  • Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
  • Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
  • Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland

Bibliografia

  • 1. Amela C., Jesús Clemente M., Vélez D., Montoro R.: Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 2006; 44: 1901-1908.
  • 2. Baeyens W., Gao Y., De Galan S., Bilau M., Van Larebeke N., Leermakers M.: Dietary exposure to total and toxic arsenic In Belgium: Importance of arsenic speciation in North Sea fish. Mol. Nutr. Food Res. 2009; 53:558-565.
  • 3. Brandon E.F., Janssen P.J., de Wit-Bos L.: Arsenic: bioaccessibility from seaweed and rice, dietary exposure calculations and risk assessment. Food Addit. Contam. Part A. 2014; 31(12): 1993-2003.
  • 4. Brulińska-Ostrowska E., Starska K. Wojciechowska-Mazurek M.: Metoda oznaczania arsenu w środkach spożywczych metodą absorpcyjnej spektrometrii atomowej z wykorzystaniem generacji wodorków (HGAAS). Ocena odzysku i prezentacja wyników. [Method of determination of arsenic in foodstuffs by using HGAAS technique. Estimation of recovery and final result presentation]. Methodology Publications of National Institute of Hygiene, Warsaw, Poland 2005.
  • 5. Central Statistical Office. Information and elaborations. Household budget survey. In 2013. Warsaw 2014.
  • 6. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. OJ L 364, 20.12.2006, as amended.
  • 7. Commission Regulation (EU) No 231⁄2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council. OJ L 83, 22.03.2012, as amended.
  • 8. Contreras-Acuna M., García-Barrera T., García-Sevillano M.A., Gómez-Ariza J.L.: Arsenic metabolites in human serum and urine after seafood (Anemonia sulcata) consumption and bioaccessibility assessment using liquid chromatography coupled to inorganic and organic mass spectrometry. Microchem. J. 2014; 112: 56-64.
  • 9. Dahl L., Molin M., Amlund H., Meltzer H.M., Julshamn K., Alexander J., Sloth J.J.: Stability of arsenic compounds in seafood samples during processing and storage by freezing. Food Chem. 2010; 123: 720-727.
  • 10. Fattorini D., Alonso-Hernandez C.M., Diaz-Asencio M., Munoz-Caravaca A., Pannacciulli F.G., Tangherlini M., Regoli F.: Chemical speciation of arsenic in different marine organisms: Importance in monitoring studies. Mar Environ Res 2004; 58: 845-850.
  • 11. Food and Agriculture Organization/World Health Organization. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. Rome, Food and Agriculture Organization of the United Nations; Geneva, World Health Organization, 50 pp, 2011.
  • 12. Food Standards Agency. Consumers advised not to eat hijiki seaweed. Food Standards Agency, UK 2010. http://tna.europarchive.org/20130513091226/http://www.food.gov.uk/newsupdates/news/2010/aug/hijikiseaweed
  • 13. Food Standards Australia New Zealand. Survey of inorganic arsenic in seaweed and seaweed-containing products available in Australia. FSANZ. 2013.
  • 14. Foust Jr. R.D., Bauer A-M., Costanza-Robinson M., Blinn D.W., Prince R.C., Pickering I.J., George G.N.: Arsenic transfer and biotransformation in a fully characterized freshwater web. Coordin. Chem. Rev.2015. Article in press.
  • 15. French Agency for Food, Environmental and Occupational Health & Safety. Second French Total Diet Study (TDS 2) Report 1. Inorganic contaminants, minerals, persistent organic pollutants, mycotoxins and phytoestrogens. ANSES, 2011, 1-77.
  • 16. General Standard for Contaminants and Toxins in Food and Feed (CODEX STAN 193-1995) GSCTFF, 1-44.
  • 17. Global Environment Monitoring System, Food Contamination Monitoring and Assessment Programme (GEMS/ Food), Instructions for Electronic Submission of Data on Chemical Contaminants in Food and Diet, Food Safety Department, WHO, Geneva 2003.
  • 18. Guérin T., Chekri R., Pastel Ch., Sirot V., Volatier J-L., Leblanc J-Ch., Noël L.: Determination of 20 trace elements In fish and other seafood from the French market. Food Chem. 2011; 127: 934-942.
  • 19. Hedegaard V.R., Rokkjær I., Sloth J.J.: Total and inorganic arsenic in dietary supplements based on herbs, other botanicals and algae – a possible contributor to inorganic 405: 4429-4435.
  • 20. Jara E. A., Winter K.C.: Dietary exposure to total and inorganic arsenic in the United States, 2006-2008. Int. J of Food Contam. 2014; 1:3: 1-12.
  • 21. Khan N., Ryu K.Y., Choi J.Y., Nho E.Y., Habte G., Choi H., Kim M.H., Park K.S., Kim K.S.: Determination of toxic heavy metals and speciation of arsenic In seaweeds from South Korea. Food Chem. 2015; 169: 464-470.
  • 22. Kołodziejczyk M.: Spożycie ryb i przetworów rybnych w Polsce – analiza korzyści I zagrożeń. [Consumption of fish and fishery products in Poland – analysis of benefits and risks]. Rocz Panstw Zakl Hig 2007; 58(1): 287-293.
  • 23. Kucuksezgin F., Tolga Gonul L., Tasel D.: Total and inorganic arsenic levels in some marine organisms from Izmir Bay (Eastern Aegean Sea): A risk assessmnent. Chemosphere. 2014; 112: 311-316.
  • 24. Leblanc J.Ch., Sirot V., Volatier J.L., Bemrah-Aouachria N. et al.: Calipso - fish and seafood consumption study and biomarker of exposure to trace elements, pollutants and omega 3, AFFSA, DGAL, INRA. Geneva 2006.
  • 25. Lynch H.N., Greenberg G.I., Pollock M.C., Lewis A.S.: A comprehensive evaluation of inorganic arsenic in food and considerations for dietary intake analyses. Sci. Total. Environ. 2014; 496: 299-313.
  • 26. Mania M., Szynal T., Rebeniak M., Wojciechowska-Mazurek M., Starska K., Strzelecka A.: Human exposure assessment to different arsenic species in tea. Rocz Panstw Zakl Hig 2014; 65(4): 281-286.
  • 27. Miklavčič A., Casetta A., Snoj Trawnik J., Mazej D., Krsnik M., Mariusz M., Sofianou K., Špirić Z., Barbone F., Horvat M.: Merkury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. Environ. Res. 2013; 120: 7-17.
  • 28. Munoz O., Vélez D., Montoro R.: Optimization of the solubilization, extraction and determination of inorganic arsenic [As (III) + As (V)] in seafood products by acid digestion, solvent extraction and hydride generation, solvent extraction and hydride generation atomic absorption spectrometry. Analyst 1999; 124: 601-607.
  • 29. Navas-Acien A., Francesconi K.A., Silbergeld E.K., Guallar E.: Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ. Res. 2011; 111: 110-118.
  • 30. NSW Food Authority. Inorganic arsenic in seaweed and certain fish. NSW Food Authority Australia, 2010.
  • 31. Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food Safety (VKM). Benefit-risk assessment of fish and fish products in the Norwegian diet – an update. VKM, 2014.
  • 32. Ordinance of Polish Minister of Health of 29 March 2007 on the quality of water intended for human consumption. Dz. U. No. 61, pos. 417, as amended.
  • 33. Ordinance of Polish Minister of Health of 31 March 2011 on the natural mineral waters, spring waters and potable waters. Dz. U. No. 85, pos. 466.
  • 34. Raber G., Stock N., Hanel P., Murko M., Navratilova J., Francesconi K.A.: An improved HPLC-ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chem. 2012; 134: 524-532.
  • 35. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, as amended.
  • 36. Ruangwises N., Saipan P., Ruangwises S.: Total and inorganic arsenic in natural and aquacultural freshwater fish in Thailand: A Comparative Study. Bull. Environ. Contam. Toxicol. 2012; 89:1196-1200.
  • 37. Ruttens A., Blanpain A.C., De Temmerman L., Waegeneers N.: Arsenic speciation in food in Belgium. Part 1: Fish, mollusks and crustaceans. J. Geochem. Explor. 2012; 121:55-61.
  • 38. Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on arsenic in food. The EFSA Journal 2009, 7(10), 1-199.
  • 39. Scientific Report of EFSA. Dietary exposure to inorganic arsenic in the European population. The EFSA Journal 2014, 12(3), 1-68 pp.
  • 40. Scientific Report of EFSA. Management of left-censored data in dietary exposure assessment of chemical substances. The EFSA Journal 2010, 8 (3):1557, 1-96.
  • 41. SCOOP (Scientific Co-operation on Questions Relating to Food). Assessment of dietary exposure to arsenic, cadmium, lead, mercury of the population of the European Union Member States. 2004.
  • 42. Sirot V., Guérin T., Volatier J.-L., Leblanc J.-C. : Dietary exposure and biomarkers of arsenic in consumers of fish and shellfish from France. Sci. Total. Environ. 2009; 407: 1875-1885.
  • 43. Starska, K., Wojciechowska-Mazurek, M., Mania, M., Rebeniak, M., Karłowski, K.: Zanieczyszczenie żywności ołowiem i arsenem. [Contamination of food with lead and arsenic]. In: Karłowski K., Rybińska K., Postupolski J. (eds.): Ocena narażenia konsumentów na chemiczne i mikrobiologiczne zanieczyszczenia żywności – programy realizowane w latach 2004-2008. [Exposure assessment to chemical and microbiological food contaminants – programme executed in the years 2004-2008]. National Institute of Public Health-National Institute of Hygiene, Warsaw, 2010, pp. 44-70 (in Polish).
  • 44. The GEMS/Food Consumption Cluster Diets, WHO, 2007.
  • 45. The Rapid Alert System for Food and Feed. Available from: http://ec.europa.eu/food/safety/rasff/index_en.htm. 46. WHO Technical Report Series: 1989. Evaluation of certain food additives and contaminants (Thirty-third report of the Joint FAO/WHO Expert Committee on Food Additives), No. 776.
  • 47. WHO Technical Report Series: 2011. Evaluation of certain contaminants in food (Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives), No. 959.
  • 48. Wojciechowska-Mazurek M., Mania M., Starska K., Rebeniak M., Postupolski J.: Czy zostaną wprowadzone dopuszczalne poziomy arsenu w żywności? [Will the maximum levels of arsenic in food be introduced?] Przem. Spoż. 2012; 66(2):10-15 (in Polish).
  • 49. Wojciechowska-Mazurek M., Starska K., Mania M., Brulińska-Ostrowska E., Biernat U., Karłowski K.: Monitoring zanieczyszczenia żywności pierwiastkami szkodliwymi dla zdrowia. Cz.II. Wody mineralne, napoje bezalkoholowe, owoce, orzechy, ryż, soja, ryby I owoce morza. [Monitoring of contamination of foodstuffs with elements noxious to human health. Part II. Mineral waters, soft drinks, fruits, nuts, rice, soybeans, fish and seafood]. Rocz Panstw Zakl Hig 2010; 61(1): 27-35. (in Polish).
  • 50. Yokel R.A., Lasley S.M., Dorman D.C.: The speciation of Metals in Mammals Influences Their Toxicokinetics and Toxicodynamics and Therefore Human Health Risk Assessment 1. J.Toxicol. Environ. Health B. 2006; 9: 63-85.
  • 51. Yokoi K., Konomi A.: Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul. Toxicol. Pharm. 2012; 63: 291-297.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b88584ea-c267-4705-aa0d-462ead4f189e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.