PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 3 |

Tytuł artykułu

Spatial variability of greenhouse gas effluxes and their controlling factors in the Poyang Lake in China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
CO₂, CH₄, and N₂O (GHG) emissions are globally important in China, but few field observations have been made in freshwater lakes. In this paper, we measured the GHG effluxes from 44 sampling locations among four sub-regions in Poyang Lake in China in October 2010 using floating chambers. The mean CO₂, CH₄, and N₂O effluxes were 0.23 μmol m⁻²·s⁻¹, 3.0 nmol·m⁻²·s⁻¹, and 0.11 nmol m⁻²·s⁻¹, ranging from -0.25 to 0.54 μmol·m⁻²·s⁻¹, 1.4 to 8.9 nmol m⁻²·s⁻¹, and 0.012 to 0.21 nmol·m⁻²·s⁻¹ for the CO₂, CH₄, and N₂O efflux, respectively. We found differently related tendencies between GHG effluxes and environmental parameters for each sub-region and, totally, four sub-regions together. The 16 environmental factors explained the GHG effluxes with 55%, 70%, and 89% of the variation in CO₂, CH₄, and N₂O efflux, respectively, in Poyang Lake. Our analysis revealed that sediment C/N ratio, water depth, and the difference of air-water temperature were significantly contributing variables for GHG effluxes in the lake.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

3

Opis fizyczny

p.749-758,fig.,ref.

Twórcy

autor
  • Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • University of Chinese Academy of Sciences, Beijing 100039, China
autor
  • Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
autor
  • Beijing Forestry University, Beijing 100083, China
autor
  • Beijing Forestry University, Beijing 100083, China

Bibliografia

  • 1. DALAL R.C., ALLEN D.E. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 56, 369, 2008.
  • 2. LE TREUT H., SOMERVILLE R., CUBASCH U., DING Y., MAURITZEN C., MOKSSIT A., PETERSON T., PRATHER M. Historical Overview of Climate Change. In: Climate Change 2007 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp. 103-111, 2007.
  • 3. BASTVIKEN D., COLE J., PACE M., TRANVIK L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cy. 18, 1, 2004.
  • 4. WALTER K.M., ZIMOV S.A., CHANTON J.P. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71, 2006.
  • 5. VON FISCHER J.C., RHEW R.C., AMES G.M., FOSDICK B.K., VON FISCHER P.E. Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at Barrow, Alaska. J. Geophys. Res. 115, 1, 2010.
  • 6. BASTVIKEN D., SANTORO A.L., MAROTTA H., PINHO L.Q., CALHEIROS D.F., CRILL P., ENRICH-PRAST A. Methane Emissions from Pantanal, South America, during the Low Water Season: Toward More Comprehensive Sampling. Environ. Sci. Technol. 44, 5450, 2010.
  • 7. SCHRIER-UIJL A.P., VERAART A.J., LEFFELAAR P.A., BERENDSE F., VEENENDAAL E.M. Release of CO₂ and CH₄ from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102, 265, 2011.
  • 8. WANG F.H., WANG B.L., LIU C.Q., WANG Y.C., GUAN J., LIU X.L., YU Y. X. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China. Atmos. Environ. 45, 3827, 2011.
  • 9. BASTVIKEN D., TRANVIK L.J., DOWNING J.A., CRILL P.M., ENRICH-PRAST A. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 331, 2011.
  • 10. TRANVIK L.J., DOWNING J.A., COTNER J.B. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298, 2009.
  • 11. HUTTUNEN J., ALM J., LIIKANEN A., JUUTINEN S., LARMOLA T., HAMMAR T., SILVOLA J., MARTIKAINEN P. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52, 609, 2003.
  • 12. LIU Y.S., ZHU R.B., MA D.W., XU H., LUO Y.H., HUANG T., SUN L.G. Temporal and spatial variations of nitrous oxide fluxes from the littoral zones of three alga-rich lakes in coastal Antarctica. Atmos. Environ. 45, 1464, 2011.
  • 13. YANG H., XIE P., NI L.Y., FLOWER R.J. Underestimation of CH₄ Emission from Freshwater Lakes in China. Environ. Sci. Technol. 45, 4203, 2011.
  • 14. PAVEL A., DURISCH-KAISER E., BALAN S., RADAN S., SOBEK S., WEHRLI B. Sources and emission of greenhouse gases in Danube Delta lakes. Environ. Sci. Pollut. Res. 16, 86, 2009.
  • 15. ZHU R.B., LIU Y.H., XU H., HUANG T., SUN J.J., MA E.D., SUN L.G. Carbon dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica. Atmos. Environ. 44, 304, 2010.
  • 16. TREMBLAY A., LAMBERT M., DEMERS C. Greenhouse Gas Emissions-Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments; Springer-Verlag: Berlin, Mercedes-Druck, pp. 209-232, 2005.
  • 17. WANG S.L., LIU C.Q., YEAGER K.M., WAN G.J., LI J., TAO F.X., Lǚ Y.C., LIU F., FAN C.X. The spatial distribution and emission of nitrous oxide (N₂O) in a large eutrophic lake in eastern China: Anthropogenic effects. Sci. Total Environ. 407, 3330, 2009.
  • 18. XING Y. P., XIE P., YANG H., WU A.P., NI L.Y. The change of gaseous carbon fluxes following the switch of dominant producers from macrophytes to algae in a shallow subtropical lake of China. Atmos. Environ. 40, 8034, 2006.
  • 19. YANG L., LI H. Yunnan wetlands. In: 1st ed., Introduction. China Forestry Publishing House: China, Beijing, pp. 1-20, 2010.
  • 20. HU Q., FENG S., GUO H., CHEN G. Y., JIANG T. Interactions of the Yangtze river flow and hydrologic processes of the Poyang Lake, China. J. Hydrol. 347, 90, 2007.
  • 21. WAN H.X., QIN Z.H., LIU Y.B., XU Y.M. Estimates of carbon fluxes from Poyang Lake wetlands vegetation in the growing season. Proc. of SPIE 7858, 1, 2010.
  • 22. XING Y.P., XIE P., YANG H., NI L.Y., WANG Y.S., RONG K.W. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China. Atmos. Environ. 39, 5532, 2005.
  • 23. ÅBERG J., BERGSTRÖM A.K., ALGESTEN G., SÖDERBACK K., JANSSON M. A comparison of the carbon balances of a natural lake (L. Örträsket) and a hydroelectric reservoir (L. Skinnmuddselet) in northern Sweden. Water Res. 38, 531, 2004.
  • 24. CASPER P., MABERLY S.C., HALL G.H., FINLAY B.J. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49, 1, 2000.
  • 25. STRIEGL R.G., MICHMERHUIZEN C.M. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol. Oceanogr. 43, 1519, 1998.
  • 26. RIERA J.L., SCHINDLER J.E., KRATZ T.K. Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can. J. Fish. Aquat. Sci. 56, 265, 1999.
  • 27. LI X.H. Study of greenhouse gas flux of water-air interface and its spatio-temporal change in Taihu Lake. Master’s thesis, He Hai University, Nanjing, HH, 2005.
  • 28. DUAN X.N., WANG X.K., MU Y.J., OUYANG Z.Y. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmos. Environ. 39, 4479, 2005.
  • 29. MARANI L., ALVALÁ P.C. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmos. Environ. 41, 1627, 2007.
  • 30. ST.LOUIS V.L., KELLY C.A., DUCHEMIN É., RUDD J.W. M., ROSENBERG D.M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50, 766, 2000.
  • 31. ASELMANN I., CRUTZEN P.J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8, 307, 1989.
  • 32. HENDZEL L.L., MATTHEWS C.J.D., VENKITESWARAN J.J., ST. LOUIS V.L., BURTON D., JOYCE E.M., BODALY R.A. Nitrous Oxide Fluxes in Three Experimental Boreal Forest Reservoirs. Environ. Sci. Technol. 39, 4353, 2005.
  • 33. HUTTUNEN J.T.,VÄISÄNEN T.S., HELLSTEN S.K., HEIKKINEN M., NYKÄNEN H., JUNGNER H., NISKANEN A., VIRTANEN M.O., LINDQVIST O.S., NENONEN O.S., MARTIKAINEN P.J. Fluxes of CH₄, CO₂, and N₂O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Global Biogeochem. Cy. 16, 1, 2002.
  • 34. HUTTUNEN J.T., MÄNTYNEN K., ALM J., HAMMAR T., SILVOLA J., MARTIKAINEN P.J. Pelagic methane emissions from three boreal lakes with different trophy. In: Kuusisto S., Isoaho S., Puhakka J. (Eds.), Environmental Science, Technology and Policy. Proceedings, Fourth Finnish Conference of Environmental Sciences, 21-22 May 1999, Tampere, Finland. Water and Environmental Engineering Report 9. Tampere University of Technology, Tampere, Finland, pp. 152-154, 1999.
  • 35. CHEN Y.G., BAI X.H., LI X.H., HU Z.X., LIU W.L. Primary study of the methane flux on the water-air interface of eight lakes in winter, China. J. Lake Sci. 19, 11, 2007.
  • 36. COLE J.J., CARACO N.F. Emissions of Nitrous Oxide (N₂O) from a Tidal, Freshwater River, the Hudson River, New York. Environ. Sci. Technol. 35, 991, 2001.
  • 37. COHEN Y., GORDON L.I. Nitrous oxide production in the ocean. J. Geophys. Res. 84, 347, 1979.
  • 38. NEVISON C.D., WEISS R.F., ERICKSON III, D.J. Global oceanic emissions of nitrous oxide. J. Geophys. Res. 100, 15809, 1995.
  • 39. STRIEGL R.G., KORTELAINEN P., CHANTON J.P., WICKLAND K.P., BUGNA G.C., RANTAKARI M. Carbon dioxide partial pressure and ¹³C content of north temperate and boreal lakes at spring ice melt. Limnol. Oceanogr. 46, 941, 2001.
  • 40. DUC N.T., CRILL P., BASTVIKEN D. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100, 185, 2010.
  • 41. VALENTINE D.W., HOLLAND E.A., SCHIMEL D.S. Ecosystem and physiological controls over methane production in a northern wetland. J. Geophys. Res. 99, 1563, 1994.
  • 42. KLEMEDTSSON L., VON ARNOLD K., WESLIEN P., GUNDERSEN P. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biol. 11, 1142, 2005.
  • 43. DINSMORE K.J., SKIBA U.M., BILLETT M.F., REES R.M., DREWER J. Spatial and temporal variability in CH₄ and N₂O fluxes from a Scottish ombrotrophic peatland: Implications for modeling and up-scaling. Soil Biol. Biochem. 41, 1315, 2009.
  • 44. ZHENG H., ZHAO X.J., ZHAO T.Q., CHEN F.L.,XU W.H., DUAN X.N., WANG X.K., OUYANG Z.Y. Spatialtemporal variations of methane emissions from the Ertan hydroelectric reservoir in southwest China. Hydrol. Process. 25, 1391, 2011.
  • 45. GUÉRIN F., ABRIL G., SERCA D., DELON C., RICHARD S., DELMAS R., TREMBLAY A., VARFALVY L. Gas transfer velocities of CO₂ and CH₄ in a tropical reservoir and its river downstream. J. Marine Syst. 66, 161, 2007.
  • 46. LISS P.S., BALLS P.W., MARTINELLI F.N., COANTIC M. The effect of evaporation and condensation on gas transfer across an air-water interface. Oceanol. Acta 4, 129, 1981.
  • 47. WARD B., WANNINKHOF R., MCGILLIS W.R., JESSUP A.T., DEGRANDPRE M.D., HARE J.E., EDSON J.B. Biases in the air-sea flux of CO₂ resulting from ocean surface temperature gradient. J. Geophys. Res. 109, 1, 2004.
  • 48. BASTVIKEN D., COLE J.J., PACE M.L., VAN DE BOGERT M. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH₄ emissions. J. Geophys. Res. 113, 1, 2008.
  • 49. LIMA IB.T. Biogeochemical distinction of methane releases from two Amazon hydroreservoirs. Chemosphere 59, 1697, 2005.
  • 50. DAVIDSON E.A., SCHIMEL J.P. Microbial processes of production and consumption of nitric oxide, nitrous oxide and methane. In Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell Science: London, pp. 327-357, 1995.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b855c19d-4617-43c7-a5fb-4c99fe5b911b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.