PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Comparing machine-learning models for drought forecasting in Vietnam’s Cai river basin

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Drought occurs throughout the world, affecting people more than any other major natural hazards – especially in the agriculture industry. An effective and timely monitoring system is required to mitigate the impacts of drought. Meanwhile, extreme learning machine (ELM), online sequential extreme learning machine (OS-ELM), and self-adaptive evolutionary extreme learning machine (SADE-ELM) are rarely applied as the alternative drought-forecasting tools in the meantime. The present study aims to evaluate the ability of these models to predict drought and the quantitative value of drought indices, the standardized precipitation index (SPI), and the standardized precipitation evapotranspiration index (SPEI). For this purpose, the sea surface temperature anomalies (SSTA) events at NinoW and Nino4 zones were selected for input variables to forecast drought. The SPI/SPEI values may contain a one/three/six-month dry and a one/three/six-month wet period in short-term periods, and this causes instability. For this reason, 4 models for SPI/SPEI (12 months) were trained and tested by these methods, respectively. According to two statistical indices (RMSE and CORR) and stability of these methods, the SADE-ELM models perform the best, and the performance of the OS-ELM models are better than the ELM models.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2633-2646,fig.,ref.

Twórcy

autor
  • College of Hydrology and Water Resources, Hohai University, Nanjing, China
  • School of Civil Engineering, Guizhou Institute of Technology, Guiyang, China
autor
  • College of Hydrology and Water Resources, Hohai University, Nanjing, China
autor
  • Thuyloi University, Hanoi, Vietnam
autor
  • School of Civil Engineering, Guizhou Institute of Technology, Guiyang, China

Bibliografia

  • 1. AGHAKOUCHAK A., CHENG L., MAZDIYASNI O., FARAHMAND A. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophysical Research Letters, 41 (24), 8847, 2014.
  • 2. HAO Z., AGHAKOUCHAK A., NAKHJIRI N., FARAHMAND A. Global integrated drought monitoring and prediction system. Scientific Data 1, 140001, 2014.
  • 3. WILHITE DA. Drought as a natural hazard: Concepts and definitions. Drought: A Global Assessment, 69 (1), 3, 2000.
  • 4. DAI A., TRENBERTH K.E., QIAN T. A Global Dataset of Palmer Drought Severity Index for 1870-2002: Relationship with Soil Moisture and Effects of Surface Warming. Journal of Hydrometeorology, 5 (6), 1117, 2004.
  • 5. YU M., LI Q., HAYES M.J., SVOBODA M.D., HEIM R. R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010?. International Journal of Climatology, 34 (3), 545, 2014.
  • 6. JAIN S.K., KESHRI R., GOSWAMI A., SARKAR A. Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India. Natural Hazards, 54 (3), 643, 2010.
  • 7. TODISCO F., MANNOCCHI F., VERGNI L. Severity-duration-frequency curves in the mitigation of drought impact: an agricultural case study. Natural Hazards, 65 (3), 1863, 2013.
  • 8. SOHRABI M. M., RYU J. H., ABATZOGLOU J., TRACY J. Climate extreme and its linkage to regional drought over Idaho, USA. Natural Hazards, 65 (1), 653, 2013.
  • 9. OSORIO J. G., GALIANO S. G. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs). Journal of Hydrology, 450 (11), 82, 2012.
  • 10. WAYNE C. PALMER. Meteorological Drought. Research Paper, 45, 58, 1965.
  • 11. WAYNE C. PALMER. Keeping track of crop moisture conditions nationwide: The new Crop Moisture Index. Weatherwise, 21, 156, 1968.
  • 12. MCKEE T.B., DOESKEN N.J., KLEIST J. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17 (22), 179, 1993.
  • 13. VICENTE-SERRANO S.M., BEGUERÍA S., LÓPEZ-MORENO J.I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23 (7), 1696, 2010.
  • 14. BONACCORSO B., BORDI I., CANCELLIERE A., ROSSI G., SUTERA A. Spatial variability of drought: an analysis of the SPI in Sicily. Water Resources Management, 17 (4), 273, 2003.
  • 15. CACCIAMANI C., MORGILLO A., MARCHESI S., PAVAN V. Monitoring and forecasting drought on a regional scale: Emilia-Romagna region. Methods and Tools for Drought Analysis and Management, 62 (2), 29, 2007.
  • 16. TSAKIRIS G., VANGELIS H. Towards a drought watch system based on spatial SPI. Water Resources Management, 18 (1), 1, 2004.
  • 17. NGUYEN L. B., LI Q. F., NGOC T. A., HIRAMATSU K. Adaptive Neuro–Fuzzy Inference System for Drought Forecasting in the Cai River Basin in Vietnam. Journal of the Faculty of Agriculture Kyushu University, 60 (2), 405, 2015.
  • 18. Khashei M., Bijari M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11 (2), 2664, 2011.
  • 19. ZHAO X. H., CHEN X. Auto regressive and ensemble empirical mode decomposition hybrid model for annual runoff forecasting. Water Resources Management, 29 (8), 2913, 2015.
  • 20. ZOUNEMAT-KERMANI M. Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge. Water Resources Management, 30 (5), 1851, 2016.
  • 21. BOX G. BOX, JENKINS. Time series analysis forecasting and control. A Very British Affair: Six Britons and the Development of Time Series Analysis during the 20th Century, 11 (27), 161, 2012.
  • 22. WEI S., ZUO D., Song, J. Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network. Journal of Hydroinformatics, 14 (4), 974, 2012.
  • 23. BARZEGAR R., ADAMOWSKI J., ASGHARI MOGHADDAM A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stochastic Environmental Research and Risk Assessment, 30 (7), 1797, 2016.
  • 24. DAWSON C.W., WILBY R. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal, 43 (1), 47, 1998.
  • 25. JAIN A., KUMAR A.M. Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7 (2), 585, 2007.
  • 26. NAGY H.M., WATANABE K.A.N.D., HIRANO M. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering, 128 (6), 588, 2002.
  • 27. AGARWAL A., MISHRA S.K., RAM S., SINGH J.K. Simulation of runoff and sediment yield using artificial neural networks. Biosystems Engineering, 94 (4), 597, 2006.
  • 28. 28. MORID S., SMAKHTIN V., BAGHERZADEH K. Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology, 27 (15), 2103, 2007.
  • 29. BARZEGAR R., ASGHARI MOGHADDAM A., ADAMOWSKI J., OZGA-ZIELINSKI B. Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stochastic Environmental Research and Risk Assessment, http://dx.doi.org/10.1007/s00477017-1394-z. 2017.
  • 30. BARZEGAR R., FIJANI E., ASGHARI MOGHADDAM A., TZRITIS, E. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Science of the Total Environment, 599 (600), 20, 2017.
  • 31. BARZEGAR R., MOGHADDAM A.A., ADAMOWSKI J., FIJANI E. Comparison of machine learning models for predicting fluoride contamination in groundwater. Stochastic Environmental Research and Risk Assessment, 1, 2016.
  • 32. DEO RAVINESH C., MEHMET SAHIN An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environmental Monitoring and Assessment, 188 (2), 90, 2016.
  • 33. WU S.I., YOUYI WANG, SHIJIE CHENG. Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing, 102, 163, 2013.
  • 34. WANG, JIANZHOU, JIANMING HU. A robust combination approach for short-term wind speed forecasting and analysis–Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy, 93, 41, 2015.
  • 35. NIKOLIĆ V., MOTAMEDI S., SHAMSHIRBAND S., PETKOVIĆ D., CH S., ARIF M. Extreme learning machine approach for sensorless wind speed estimation. Mechatronics, 34, 78, 2016.
  • 36. ZHANG C., ZHOU J., LI C., FU W., PENG T. A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Conversion and Management, 143, 360, 2017.
  • 37. DEO R.C., TIWARI M.K., ADAMOWSKI J.F., QUILTY J.M. Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stochastic Environmental Research and Risk Assessment, 31 (5), 1211, 2017.
  • 38. ANAM, KHAIRUL, ADEL AL-JUMAILY. Adaptive myoelectric pattern recognition for arm movement in different positions using advanced online sequential extreme learning machine. Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE, 900, 2016.
  • 39. YADAV B., CH S., MATHUR S., ADAMOWSKI J. Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River, Germany. Measurement, 92, 433, 2016.
  • 40. LU J., HUANG J., LU F. Sensor fault diagnosis for aero engine based on online sequential extreme learning machine with memory principle. Energies, 10 (1), 39, 2017.
  • 41. EBTEHAJ I., SATTAR A.M., BONAKDARI H., ZAJI A.H. Prediction of scour depth around bridge piers using self-adaptive extreme learning machine. Journal of Hydroinformatics, 19 (2), 207, 2017.
  • 42. XIAO C., DONG Z., XU Y., MENG K., ZHOU X., ZHANG X. Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast. Memetic Computing, 8 (3), 223, 2016.
  • 43. NAHVI B., HABIBI J., MOHAMMADI K., SHAMSHIRBAND S., AL RAZGAN O.S. Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Computers and Electronics in Agriculture, 124, 150, 2016.
  • 44. REYNOLDS R.W., RAYNER N.A., SMITH T.M., STOKES D.C., WANG W. An Inproved In Situ and Satellite SST Analysis for Climate. Journal of Climate, 15 (13), 1609, 2002.
  • 45. APDRC (2013) APDRC LAS7 for public (SSTA). Available online: http://apdrc.soest.hawaii.edu/las/v6/constrain?var=295 (accessed on 10 Oct 2013).
  • 46. HUANG G.B., ZHU Q.Y., SIEW C.K. Extreme learning machine: theory and applications. Neurocomputing, 70 (1), 489, 2006.
  • 47. HUANG G.B. An Insight into Extreme learning machines: random neurons, random features and kernels. Cognitive Computation, 6 (3), 376, 2014.
  • 48. LI S., WANG P., GOEL L. A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection. IEEE Transactions on Power Systems, 31 (3), 1788, 2016.
  • 49. SUN Z., CHOI T., AU K., YU Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems, 46 (1), 411, 2008.
  • 50. ZHANG R., DONG Z., XU Y., MENG K., WONG K. Shortterm load forecasting of Australian National Electricity Market by an ensemble model of extreme learning machine. IET Generation, Transmission and Distribution, 7 (4), 391, 2013.
  • 51. HUANG G.B.,WANG D.H., LAN Y. Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2 (2), 107, 2011.
  • 52. LIANG N.Y., HUANG G.B., SARATCHANDRAN P., SUNDARAJAN N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on neural networks, 17 (6), 1411, 2006.
  • 53. SALIM HEDDAM, OZGUR KISI. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Environmental Science and Pollution Research, 24 (20), 16702, 2017.
  • 54. CAO J., LIN Z., HUANG G.B. Self-adaptive evolutionary extreme learning machine. Neural Processing Letters, 36 (3), 285, 2012.
  • 55. ZHANG Y., CAI Z., GONG W., WANG X. Self-adaptive differentialevolution extreme learning machine and its application in water quality evaluation. Journal Compute Inference System, 11 (4), 1443, 2015.
  • 56. DAS S., RAM G., MANDAI D., KAR R., GHOSHAL S.P. Self adaptive differential evolution based thinning of concentric circular antenna arrays. International Conference on Digital Object Identifier, 1, 2013.
  • 57. ZHAO Z., HU M. Multi-level forecasting model of coal mine water inrush based on self-adaptive evolutionary extreme learning machine. Applied Mathematics and Information Sciences Letters, 2 (3), 103, 2014.
  • 58. BEGUERÍA S., VICENTE-SERRANO SM (2009) SPEI and SPI calculator. Available online: http://digital.csic.es/handle/10261/10002 (accessed on 15 Feb 2014).
  • 59. WMO Standardized precipitation index user guide. In: WMO-No. 1090. World Meteorological Organization, Geneva 2, Switzerland. 2012.
  • 60. BACANLI U., FIRAT M., DIKBAS F. Adaptive Neuro-Fuzzy InferenceSystem for drought forecasting. Stochastic Environmental Research and Risk Assessment, 23 (8), 1143, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b83ffe85-1075-4b6b-9661-61afc8f7b872
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.