PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 31 | 4 |

Tytuł artykułu

Algorithms for detecting cherry pits on the basis of transmittance mode hyperspectral data

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The suitability of the hyperspectral transmittance imaging technique was assessed in terms of detecting the internal intrusions (pits and their fragments) in cherries. Herein, hyperspectral transmission images were acquired in the visible and near-infrared range (450-1000 nm) from pitted and intact cherries of three popular cultivars: ‘Łutówka’, ‘Pandy 103’, and ‘Groniasta’, differing by soluble solid content. The hyperspectral transmittance data of fresh cherries were used to determine the influence of differing soluble solid content in fruit tissues on pit detection effectiveness. Models for predicting the soluble solid content of cherries were also developed. The principal component analysis and the second derivative pre-treatment of the hyperspectral data were used to construct the supervised classification models. In this study, five classifiers were tested for pit detection. From all the classifiers studied, the best prediction accuracies for the whole pit or pit fragment detection were obtained via the backpropagation neural networks model (87.6% of correctly classified instances for the training/test set and 81.4% for the validation set). The accuracy of distinguishing between drilled and intact cherries was close to 96%. These results showed that the hyperspectral transmittance imaging technique is feasible and useful for the non-destructive detection of pits in cherries.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

4

Opis fizyczny

p.539-549,fig.,ref.

Twórcy

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b8190e64-0b5a-4e20-9b72-5e894f6f63bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.