PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 1 |

Tytuł artykułu

TDR technique for estimating the intensity of effective non rainfall

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this paper is to present a method for determining diurnal distribution of the intensity of effective non rainfall water flux. It was found that the application of TDR technique for the determination of diurnal dynamics of effective non rainfall water flux requires temperature correction of sensed volumetric moisture contents. Without temperature correction the error of estimated non rainfall water flux can be as much as 26%. In addition, the effect of temperature changes on the soil surface was determined in 0.5, 1, 2, 3, 4, and 5 hours periods. It was found that the intensity of effective non rainfall water flux was determined to the greatest extent by the rate of temperature drop during the period of 3 h preceding the non rainfall water flux determination. The agreement of non rainfall water flux calculated with the method proposed and that obtained by the collector was better for dew than for hoarfrost periods.

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.23-37,fig.,ref.

Twórcy

autor
  • Institute of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences, Pl.Grunwaldzki 24, 50-363 Wroclaw, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Department of Earth and Environmental Sciences, University of Wroclaw, Kosiby 8, 51-621 Wroclaw, Poland
autor
  • Department of Earth and Environmental Sciences, University of Wroclaw, Kosiby 8, 51-621 Wroclaw, Poland
autor
  • Institute of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences, Pl.Grunwaldzki 24, 50-363 Wroclaw, Poland
autor
  • Institute of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences, Pl.Grunwaldzki 24, 50-363 Wroclaw, Poland
autor
  • Institute of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences, Pl.Grunwaldzki 24, 50-363 Wroclaw, Poland

Bibliografia

  • Agam N. and Berliner P.R., 2006. Dew formation and water vapor adsorption in semi-arid environments. A review. J. Arid Environ., 65, 572-590.
  • Beysens D., Milimouk I., Nikolayev V., Muselli M., and Marcillat J., 2003. Using radiative cooling to condense atmospheric vapor: a study to improve water yield. J. Hydrol., 276, 1-11.
  • Błaś M., Sobik M., Quiel F., and Netzel P., 2002. Temporal and spatial variations of fog in the Western Sudety Mts. Poland. Atmospheric Res., 64, 19-28.
  • Bryś K. and Bryś T., 2010. Reconstruction of the 217-year (1791-2007) Wroc³aw air temperature and precipitation series. Bulletin of Geography (Physical Geography Series). Wyd. Nauk. UMK Toruń, 3, 121-171.
  • Duvdevani S., 1947. An optical method of dew estimation. Quarterly J. Royal Meteorol. Soc., 73, 282-296.
  • Ermich K., 1958. An attempt at determination of the share of socalled horizontal precipitation inwater cycle in nature (in Polish). Wiadomości Botaniczne, II(IV), 219-236.
  • Heusinkveld B.G.,Berkowicz S.M., Jacobs A.F.G.,Holtslag A.A.M., and Hillen W.C.A.M., 2005. An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J. Hydrometeorol., 7, 825-832.
  • Jacobs A.F.G., Heusinkveld B.G., and Berkowicz S.M., 1999. Dew deposition and drying in a desert system: a simple simulation model. J. Arid Environ., 42, 211-222.
  • Jacobs A.F.G., Heusinkveld B.G., and Berkowicz S.M., 2002. A simple model for potential dewfall in an arid region. Atmospheric Res., 64, 285-295.
  • Janik G., 2008. Spatial variability of soil moisture as information on variability of selected physical properties of soil. Int. Agrophysics, 22, 35-43.
  • Janik G., Szpila M., Słowińska J., Brej G., Turkiewicz M., Skierucha W., and Pastuszka T., 2011. Method for the determination of the sensitivity zone of TDR probe. Acta Agrophysica, 183, 269-286.
  • Kaseke F.K., Mills A.J., Brown R., Esler K.J., Henschel R., and Seely M.K., 2011. A method for direct assessment of the ‘non rainfall’ atmospheric water cycle: input and evaporation from the soil. Pure Appl. Geophys., 169(5-6), 847-857.
  • Katata G.,Nagai H.,Ueda H., Agam N., and Berliner P.R., 2007. Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange in arid regions. J. Hydrometeor., 8, 1307-1324.
  • Kidron G.J., 1998. A simple weighing method for dew and fog measurements. Weather, 53, 428-433.
  • Kidron G.J., 2005. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol., 301, 66-74.
  • Kolev N., Levi A., Milenova L., Nenov M., Haarbrink R., and Shutko A., 2012. Energy budget elements estimation of the agricultural field by aircraft remote sensing and land surface observations. Comptesrendusde l'Acade'miebulgare des Sci., 65(7), 991-996.
  • Kosmas C., Danalatos N.G., Poesen J., and van Wesemael B., 1998. The effect of water vapour adsorption on soil moisture content under Mediterranean climatic conditions. Agric. Water Manag., 36, 157-168.
  • Kosmas C., Marathianou M., Gerontidis St., Detsi V., Tsara M., and Poesen J., 2001. Parameters affecting water vapor adsorption by the soil under semi-arid climatic conditions. Agric. Water Manag., 48, 61-78.
  • Li X.J., 2002. Effects of gravel and sand mulches on dew deposition in the semiarid region of China. J. Hydrol., 260, 151-160.
  • Malek E., Mc Curdyb G., and Giles B., 1999. Dew contribution to the annual water balances in semi-arid desert valleys. J. Arid Environ., 42, 71-80.
  • Muselli M., Beysens D., Marcillat J., Milimouk I., Nilsson T., and Louche A., 2002. Dewwater collector for potable water in Ajaccio (Corsica Island, France). Atmospheric Res., 64, 297-312.
  • Nilsson T., 1996. Initial experiments on dew collection in Sweden and Tanzania. Solar Energy Materials Solar Cells, 40, 23-32.
  • Ninari N. and Berliner P.R., 2002. The role of dew in the water and heat balance of bare loess soil in the NegevDesert: quantifying the actual dew deposition on the soil surface. Atmospheric Res., 64, 323-334.
  • Obalum S.,Oppong J., Igwe C., Watanabe J., and Obi M., 2013. Spatial variability of uncultivated soils in derived savanna. Int. Agrophys., 27, 57-67.
  • Reinhard T. and Reinhard A., 2005. Choice of time step in calculation of water moisture by means of a mathematical model simulating drip irrigation (in Polish). Zesz. Nauk., Univ. Agric. Wrocław, 520, 95-105.
  • Richards K., 2002. Hardware scale modelling of summertime patterns of urban dew and surface moisture in Vancouver, BC, Canada. Atmospheric Res., 64, 313-321.
  • Skierucha W., 2009. Temperature dependence of time domain reflectometry - measured soil dielectric permittivity. J. Plant Nutrition Soil Sci., 172, 186-193.
  • Sochan A., Bieganowski A., Ryżak M., Dobrowolski R., and Bartmiński P., 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys., 26, 99-102.
  • Soil water status measurement devices, IA PAS, Lublin, 2008.
  • http://www.easytest.pl/downloads/ET_Brochure%202008.pdf
  • Topp G.C., Davis J.L., and Annan A.P., 1980. Electromagnetic determination of soil-water content – measurements in coaxial transmission-lines. Water Resour. Res., 16(3), 574-582.
  • Yamanaka T.,Kaihotsu I.,Oyunbaatar D., and Ganbold T., 2007. Summertime soil hydrological cycle and surface energy balance on the Mongolian steppe. J. Arid Environ., 69, 65-79.
  • Zangvil A. and Druian P., 1980. Measurements of dew at a desert site in southern Israel. Geographical Res. Forum, 2, 26-34.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b561bce5-1ac0-420a-8e6f-cf1fa233d2d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.