EN
Land use/cover change (LUCC) is one of the main factors that influence the terrestrial carbon (C) and nitrogen (N) cycle. We examined the effects of land use/cover change on topsoil C, N, and microbial biomass C, N (MBC, MBN) and their relationship with other soil properties in the middle of Heihe river basin along a land use change gradient of 100-year farmland, 27-year farmland, 33-year pine forest, 28-year poplar forest, and 21-year shrubland, as well as native desert from which all the above cultivated systems are converted. Results revealed that land use conversion from native desert to the above cultivated ecosystems not only changed the basic eco-hydrological factors of the soil, such as improving the soil moisture and field capacity, decreasing the pH and salinity, but also altered the nutrient factors, such as improving the concentrations of soil organic C (SOC), total N (TN), MBC, MBN, NO₃⁻ -N and NH₄⁺ -N,. With the increase of cultivated years, land use conversion had an increasing impact on the C and N sequestration and soil nutrients stabilization.