PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 2 |

Tytuł artykułu

Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils

Treść / Zawartość

Warianty tytułu

PL
Dolistna aplikacja kwasu salicylowego wpływa korzystnie na parametry wzrostu i plonowania roślin Brassica campestris rosnących w glebie zanieczyszczonej ołowiem poprzez pozytywną regulację systemu obrony antyoksydacyjne

Języki publikacji

EN

Abstrakty

EN
Lead (Pb) toxicity causes a severe impact on plant growth and productivity. A protective role of salicylic acid (SA) is well known under different abiotic stress conditions. However, very little is known about the SA-induced Pb resistance mechanism. In this study, we investigated the effect of SA on mustard plants (Brassica campestris L.) under Pb-stress conditions. Plants were exposed to three levels of Pb amendment to the soil (0.25, 0.50, 1.00 mM), with or without SA (0.25 mM). Plant growth, yield attributes, and yield at harvest were reduced depending on the severity of the Pb stress. Exogenous application of SA improved plant growth and yield. Biochemical data revealed that Pb toxicity resulted in higher oxidative damage by reducing nonenzymatic antioxidants such as ascorbate and glutathione at the higher dose of Pb treatment. Antioxidant enzymes (ascorbate peroxidase – APX, monodehydroascorbate reductase – MDHAR, dehydroascorbate reductase – DHAR, glutathione reductase – GR, guaiacol peroxidase – POD, glutathione S-transferase – GST, and catalase – CAT) responses varied with the Pb doses. Both the nonenzymatic and enzymatic components of the antioxidant defense system were upregulated after application of SA, resulting in lower oxidative damage under Pb-stress conditions. Taken together, the results suggest that exogenous application of the SA mitigates Pb-induced oxidative damage and consequently results in better growth and yield in mustard plants.
PL
Toksyczność ołowiu (Pb) wywiera silny wpływ na wzrost i produktywność roślin. Ochronna rola kwasu salicylowego (SA) jest dobrze znana w warunkach różnych stresów abiotycznych. Jednak niewiele wiadomo na temat indukowanego SA mechanizmu oporności na Pb. W przeprowadzonych badaniach określiliśmy wpływ SA na rośliny gorczycy (Brassica campestris L.) w warunkach stresu wywołanego Pb. Rośliny poddano działaniu trzech poziomów Pb wprowadzonych do gleby (0,25, 0,50, 1,00 mM), z lub bez SA (0,25 mM). Wzrost, wskaźniki plonowania oraz plon roślin uległy zmniejszeniu w zależności od nasilenia stresu indukowanego Pb. Egzogenna aplikacja SA wpłynęła na poprawę wzrostu i plonowania roślin. Wyniki analiz biochemicznych wykazały, że toksyczność Pb powodowała większe uszkodzenia oksydacyjne związane z obniżeniem zawartości nieenzymatycznych antyoksydantów, takich jak askorbinian i glutation, w obecności wyższych stężeń tego metalu. Aktywność enzymów antyoksydacyjnych (peroksydazy askorbinianowej – APX, reduktazy monodehydroaskorbinianowej – MDHAR, reduktazy dehydroaskorbiniano- wej – DHAR, reduktazy glutationowej – GR, peroksydazy gwajakolowej – POD, S-transferazy glutationowej – GST i katalazy – CAT) była uzależniona od stężenia Pb. Zarówno nieenzymatyczne, jak i enzymatyczne elementy systemu obrony antyoksydacyjnej były pozytywnie regulowane po zastosowaniu SA, co powodowało mniejsze uszkodzenia oksydacyjne występujące w warunkach stresu Pb. Podsumowując, uzyskane wyniki sugerują, że egzogenna aplikacja SA łagodzi uszkodzenia oksydacyjne wywołane obecnością Pb, a w konsekwencji prowadzi do lepszego wzrostu i plonowania gorczycy w warunkach ekspozycji na różne poziomy stresu indukowanego Pb.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

2

Opis fizyczny

Article: 1765 [16 p.], fig.,ref.

Twórcy

  • Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
autor
  • Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
autor
  • Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
  • Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
  • Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
autor
  • Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan

Bibliografia

  • Malar S, Vikram SS, Favas PJC, Perumal V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud. 2014;55:54. https://doi.org/10.1186/s40529-014-0054-6
  • Wierzbicka M, Przedpełska E, Ruzik R, Ouerdane L, Połeć-Pawlak K, Jarosz M, et al. Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma. 2007;231:99–111. https://doi.org/10.1007/s00709-006-0227-6
  • Sharma R, Dubey R. Lead toxicity in plants. Braz J Plant Physiol. 2005;17:35–52. https://doi.org/10.1590/S1677-04202005000100004
  • Lakra N, Tomar PC, Mishra SN. Growth response modulation by putrescine in Indian mustard Brassica juncea L. under multiple stress. Indian J Exp Biol. 2016;54:262–270.
  • Hasanuzzaman M, Fujita M. Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad IA, Duarte AC, Umar S, Khan NA, editors. Phytotechnologies: remediation of environmental contaminants. Boca Raton, FL, USA: CRC Press; 2012. p. 7–73. https://doi.org/10.1201/b12954-4
  • Nareshkumar A, Veeranagamallaiah G, Pandurangaiah M, Kiranmai K, Amaranathareddy V, Lokesh U, et al. Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.). Agricultural Sciences. 2015;6:1283–1297. https://doi.org/10.4236/as.2015.610123
  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E. Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol. 2015;62:448–454. https://doi.org/10.1134/S1021443715040159
  • Hasanuzzaman M, Hossain MA, Fujita M. Exogenous selenium pretreatment protects rapeseed plants from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res. 2012;149:248–261. https://doi.org/10.1007/s12011-012-9419-4
  • Hasanuzzaman M, Hossain MA, Jaime A, da Silva T, Fujita M. Plant responses and resistance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M, editors. Crop stress and its management: perspectives and strategies. Dordrecht: Springer; 2012. p. 261–316. https://doi.org/10.1007/978-94-007-2220-0_8
  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M. Manganese induced cadmium stress resistance in rice plants: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. C R Biol. 2016;339:462–474. https://doi.org/10.1016/j.crvi.2016.08.002
  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. Salicylic acid-induced abiotic stress resistance and underlying mechanisms in plants. Front Plant Sci. 2015;6:462. https://doi.org/10.3389/fpls.2015.00462
  • Asgher M, Khan MIR, Anjum NA, Khan NA. Minimizing toxicity of cadmium in plants – role of plant growth regulators. Protoplasma. 2015;252:399–413. https://doi.org/10.1007/s00709-014-0710-4
  • Khan A, Rahman MM, Tania M, Shoshee NF, Xu AH, Chen HC. Antioxidative potential of Duranta repens (Linn.) fruits against H2O2 induced cell death in vitro. Afr J Tradit Complement Altern Med. 2013;10:436–441. https://doi.org/10.4314/ajtcam.v10i3.9
  • Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci. 2014;5:4. https://doi.org/10.3389/fpls.2014.00004
  • Zhang Y, Xu S, Yang S, Chen Y. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma. 2015;252:911–924. https://doi.org/10.1007/s00709-014-0732-y
  • Chai J, Liu J, Zhou J, Xing D. Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid. J Exp Bot. 2014;65:6513–6528. https://doi.org/10.1093/jxb/eru369
  • Chen J, Zhu C, Li LP, Sun ZY, Pan XB. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice plants under lead stress. Journal of Environmental Sciences. 2007;19:44–49. https://doi.org/10.1016/S1001-0742(07)60007-2
  • Arshad T, Maqbool N, Javed F, Wahid A, Arshad MU. Enhancing the defensive mechanism of lead affected barley (Hordeum vulgare L.) genotypes by exogenously applied salicylic acid. J Agric Sci. 2017;9:139–146. https://doi.org/10.5539/jas.v9n2p139
  • Belkadhi A, de Haro A, Obregon S, Chaıbi W, Djebali W. Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environ Sci Pollut Res Int. 2015;22:1457–1467. https://doi.org/10.1007/s11356-014-3475-6
  • Li X, Ma L, Bu N, Li Y, Zhang L. Effects of salicylic acid pretreatment on cadmium and/or UV-B stress in soybean plants. Biol Plant. 2014;58:195–199. https://doi.org/10.1007/s10535-013-0375-4
  • Agami RA, Mohamed GF. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat plants. Ecotoxicol Environ Saf. 2013;94:164–171. https://doi.org/10.1016/j.ecoenv.2013.04.013
  • Cui W, Li L, Gao Z, Wu H, Xie Y, Shen W. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. J Exp Bot. 2012;63:5521–5534. https://doi.org/10.1093/jxb/ers201
  • Janda T, Gondor OK, Yordanova R, Szalai G, Pál M. Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant. 2014;36:2537–2546. https://doi.org/10.1007/s11738-014-1620-y
  • Dražić G, Mihailović N. Salicylic acid modulates accumulation of Cd in plants of Cd-tolerant and Cd-susceptible soybean genotypes. Arch Biol Sci. 2009;61:431–439. https://doi.org/10.2298/ABS0903431D
  • Shi G, Cai Q, Liu Q, Wu L. Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant. 2009;31:969–977. https://doi.org/10.1007/s11738-009-0312-5
  • Barrs HD, Weatherly PE. A re-examination of relative turgidity for estimating water deficits in leaves. Aust J Biol Sci. 1962;15:413–428. https://doi.org/10.1071/BI9620413
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;25:189–198. https://doi.org/10.1016/0003-9861(68)90654-1
  • Yu CW, Murphy TM, Lin CH. Hydrogen peroxide-induces chilling resistance in mung beans mediated through ABA independent glutathione accumulation. Funct Plant Biol. 2003;30:955–963. https://doi.org/10.1071/FP03091
  • Huang C, He W, Guo J, Chang X, Su P, Zhang L. Increased sensitivity to salt stress in ascorbate-deficient Arabidopsis mutant. J Exp Bot. 2005;56:3041–3049. https://doi.org/10.1093/jxb/eri301
  • Paradiso A, Berardino R, de Pinto M, di Toppi LS, Storelli FT, de Gara L. Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 2008;49:362–374. https://doi.org/10.1093/pcp/pcn013
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Hossain MA, Nakano Y, Asada K. Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 1984;25:385–395. https://doi.org/10.1093/oxfordjournals.pcp.a076726
  • Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer resistance to cadmium stress. Physiol Mol Biol Plants. 2010;16:259–272. https://doi.org/10.1007/s12298-010-0028-4
  • Hossain MZ, Hossain MD, Fujita M. Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms. Biol Plant. 2006;50:210–218. https://doi.org/10.1007/s10535-006-0009-1
  • Shannon LM, Kay E, Lew JY. Peroxidase isozymes from horseradish roots I. Isolation and physical properties. J Biol Chem. 1966;241:2166–2172.
  • Gardner FP, Pearce RB, Mitchell RL. Physiology of crop plants. Iowa State Univ. USA. Int Rice Res. Notes. 1985;27:11–2.
  • Addinsoft. XLSTAT v. 2017: data analysis and statistics software for Microsoft Excel [Software]. Paris: Addinsoft; 2017.
  • Ashraf U, Tang X. Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere. 2017;176:141–155. https://doi.org/10.1016/j.chemosphere.2017.02.103
  • Kumar A, Prasad MNV, Sytar O. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere. 2012;89:1056–1065. https://doi.org/10.1016/j.chemosphere.2012.05.070
  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, et al. Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. plants. Protoplasma. 2017;255:11–24. https://doi.org/10.1007/s00709-017-1124-x
  • Hussain A, Abbas N, Arshad F, Akram M, Khan ZI, Ahmad K, et al. Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agricultural Sciences. 2013;4:262–265. https://doi.org/10.4236/as.2013.45037
  • Ali B. Salicylic acid induced antioxidant system enhances the resistance to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Indian J Plant Physiol. 2017;22:178–189. https://doi.org/10.1007/s40502-017-0292-1
  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf. 2016;126:245–255. https://doi.org/10.1016/j.ecoenv.2015.12.026
  • Fontenele NMB, Otoch MDLO, Gomes-Rochette NF, de Menezes Sobreira AC, Barreto AAGC, de Oliveira FDB, et al. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation. Chemosphere. 2017;176:397–404. https://doi.org/10.1016/j.chemosphere.2017.02.072
  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, et al. Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crops Prod. 2014;52:617–626. https://doi.org/10.1016/j.indcrop.2013.11.033
  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol. 2010;101:3025–3032. https://doi.org/10.1016/j.biortech.2009.12.031
  • Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E. Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments. 2014;14:835–843. https://doi.org/10.1007/s11368-013-0724-0
  • López-Orenes A, Martínez-Pérez A, Calderón AA, Ferrer MA. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. Plant Physiol Biochem. 2014;84:57–66. https://doi.org/10.1016/j.plaphy.2014.09.003
  • Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F. Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and plants growth. C R Biol. 2011;334:118–126. https://doi.org/10.1016/j.crvi.2010.12.006
  • Hattab S, Hattab S, Flores-Casseres ML, Boussetta H, Doumas P, Hernandez LE, et al. Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ Exp Bot. 2016;123:1–12. https://doi.org/10.1016/j.envexpbot.2015.10.005
  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology. Cham: Springer; 2014. p. 1–44. (Reviews of Environmental Contamination and Toxicology; vol 232). https://doi.org/10.1007/978-3-319-06746-9_1
  • Mahmud JA, Hasanuzzaman M, Nahar K, Bhuyan MB, Fujita M. Insights into citric acid-induced cadmium resistance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf. 2018;147:990–1001. https://doi.org/10.1016/j.ecoenv.2017.09.045
  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M. γ-Aminobutyric acid (GABA) confers chromium stress resistance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology. 2017;26:675–690. https://doi.org/10.1007/s10646-017-1800-9
  • Pandey P, Singh J, Achary V, Reddy MK. Redox homeostasis via gene families of ascorbate–glutathione pathway. Front Environ Sci. 2015;3:25. https://doi.org/10.3389/fenvs.2015.00025
  • Khan MIR, Asgher M, Khan NA. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem. 2014;80:67–74. https://doi.org/10.1016/j.plaphy.2014.03.026
  • Liu Z, Ding Y, Wang F, Ye Y, Zhu C. Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep. 2016;35:719–731. https://doi.org/10.1007/s00299-015-1925-3
  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, et al. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci. 2016;6:1272. https://doi.org/10.3389/fpls.2015.01272
  • Noriega G, Caggiano E, Lecube ML, Santa Cruz D, Batlle A, Tomaro M, et al. The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals. 2012;25:1155–1165. https://doi.org/10.1007/s10534-012-9577-z
  • Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot. 2016;122:19–28. https://doi.org/10.1016/j.envexpbot.2015.08.002
  • Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z. Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell. 2011;30:1475–1483. https://doi.org/10.1007/s00299-011-1056-4
  • Nahar K, Rahman M, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, et al. Physiological and biochemical mechanisms of spermine-induced cadmium stress resistance in mung bean (Vigna radiata L.) plants. Environ Sci Pollut Res Int. 2016;23:21206–21218. https://doi.org/10.1007/s11356-016-7295-8
  • Hasanuzzaman M, Nahar K, Gill SS, Alharby HF, Razafindrabe BH, Fujita M. Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Front Plant Sci. 2017;8:115. https://doi.org/10.3389/fpls.2017.00115
  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, et al. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress resistance in plants. Int J Mol Sci. 2017;18:200. https://doi.org/10.3390/ijms18010200
  • Doncheva S, Moustakas M, Ananieva K, Chavdarova M, Gesheva E, Vassilevska R, et al. Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus × H. argophyllus). Environ Sci Pollut Res Int. 2013;20:823–833. https://doi.org/10.1007/s11356-012-1274-5
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress resistance in crop plants. Plant Physiol Biochem. 2010;48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) plants by enhancing antioxidant defense and glyoxalase system. Ecotoxicology. 2013;22:584–596. https://doi.org/10.1007/s10646-013-1050-4
  • Verma S, Dubey RS. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003;164:645–655. https://doi.org/10.1016/S0168-9452(03)00022-0
  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C. Lead induced changes in antioxidant metabolism of horsegram [Macrotyloma uniflorum (Lam.) Verdc.] and bengalgram (Cicer arietinum L.). Chemosphere. 2005;60:97–104. https://doi.org/10.1016/j.chemosphere.2004.11.092

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b45fab87-1b19-4350-ba61-eb6e4d4b14b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.