PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 6 |

Tytuł artykułu

Using passive atmospheric oxygenation to increase nitrification potential in a non-planted vertical flow constructed bed system

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nitrification potentials in micro-environment were examined in a non-planted vertical flow constructed bed system with an air pipe. The results showed that nitrification potential was significantly correlated with the dissolved oxygen inside the system. Enhanced nitrification of 10.15 g/m²·d was achieved, twice as much as the 4.71 g/m²·d obtained in the traditional one. Atmospheric oxygenation by the air pipe was a remarkable 23.7 g/m²·d, which improved the aerobic micro-environment for extra nitrification. Passive atmospheric oxygenation, which was increased by the air pipe without energy consumption, stimulated the growth of nitrifying bacteria and provided favorable habitats of bacterial richness. This results in high nitrification potential in the constructed bed, which is good for high-concentration rural wastewater treatment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

6

Opis fizyczny

p.1685-1690,fig.,ref.

Twórcy

autor
  • Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
autor
  • School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
autor
  • Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
autor
  • Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China

Bibliografia

  • 1. WU S., ZHANG D., AUSTIN D., DONG R., PANG C. Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal. Ecol. Eng., 37, 1789, 2011.
  • 2. YE J., WANG L., LI D., HAN W., YE C. Vertical oxygen distribution trend and oxygen source analysis for vertical-flow constructed wetlands treating domestic wastewater, Ecol. Eng., 41, 8, 2012.
  • 3. CLAUDIANE O.P., FLORENT Ch., YVES C., JACQUES B. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol. Eng., 27, 258, 2006.
  • 4. LI H.Z., YE J.F., WANG S., FU W., XING S.W. Applicance and development of vertical-flow constructed wetland technology for rural wastewater treatment in Shanghai. Environ. Pollut. Control. 30, (8), 84, 2008.
  • 5. LEE C.G., FLETCHER T.D., SUN G.Z. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 9, (1), 11, 2009.
  • 6. ALLEN J.G., BEUTEL M.W., CALL D.R., FISCHER A.M. Effects of oxygenation on ammonia oxidation potential and microbial diversity in sediment from surface flow wetland mesocosms. Bio. Technol. 101, (4), 1389, 2010.
  • 7. VYMAZAL J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ., 380, (1-3), 48, 2007.
  • 8. KADLEC R., WALLACE S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL., 2008.
  • 9. XU Z.X., WANG S., LI H.Z. A Modified cyclic batch Constructed Wetland: 200510111535.7. Chinese Patent. 2006.
  • 10. CHINESE NEPA. Water and Wastewater Monitoring Methods, 4th ed.; Chinese Environmental Science Publishing: Beijing, China, 2002.
  • 11. YU Y.X., WU G.Q., MENG X.T. Booklet of microorganism measurement. Chinese Environmental Science Publishing: Beijing, China, 1990.
  • 12. XU Z., DU X., WANG S. Simultaneous nitrification and denitrification in non-planted pilot-scale modified vertical flow constructed wetland system. Can. J. Civil Eng. 36, 1, 2009.
  • 13. SAEED T., SUN G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands. Water Res., 45, 3137, 2011.
  • 14. AUSTIN D. Influence of cation exchange capacity (CEC) in a tidal flow, flood and drain wastewater treatment wetland. Ecol. Eng., 28, (1), 35, 2006.
  • 15. SUN G., ZHAO Y., ALLEN S. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system. J. Biotechnol., 115, (2), 189, 2005.
  • 16. CANNON A.D., GRAY K.R., BIDDLESTONE A.J., THAYANITHY K. Pilot-scale development of bioreactor for the treatment of dairy dirty water. J. Agric. Eng. Res., 77, (3), 327, 2000.
  • 17. CHAZARENC F., GAGNON V., COMEAU Y., BRISSON J. Effect of plant and artificial aeration on solids accumulation and biological activities in constructed wetlands. Ecol. Eng. 35, 1005, 2009.
  • 18. HOOPER A.B., VANNELLI T., BERGMANN D.J., ARCIERO D. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek. 71, 59, 1997.
  • 19. KOOPS H.P., POMMERENING-ROSER A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b342f064-8348-4c76-8b41-c61a386ac1f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.