Organotypic hippocampal cultures are used as an alternative model for studying molecular mechanism(s) of neurogenesis after combined oxygen-glucose deprivation (OGD) mimicking ischemic conditions. The aim of the present work was to investigate the effect of OGD on stem/progenitor cells proliferation and/or differentiation in the hippocampus. Our attention was primarily focused on the relationship between neurogenesis-associated processes and activity of matrix metalloproteinases (MMPs). Cell proliferation was detected by using BrdU incorporation. Newly generated BrdU (+) cells were identified by labeling with specific cell markers. In order to check the activity and localization of MMPs we conducted in situ zymography in conjunction with immunohistochemistry. In our experimental conditions OGD-insult followed by 24 h of recovery caused the damage of neuronal cells in CA1. At 1 week cell death appears all over the hippocampus. We found that expected stimulation of endogenous neurogenesis fails as a source of compensation for the lost neurons in OGD-treated cultures. The modulation of culture microenvironment after ischemia favors the dominant proliferation of glial cells expressed by the enhancement of newly-generated oligodendrocyte progenitors. In addition, during our study we also detected some BrdU labeled nuclei encapsulated by GFAP positive processes. However, the majority of BrdU positive cells expressed microglial specific stain, particularly pronounced in CAlarea. The OGD-promoted responses involved activation of metalloproteinases, which matches the progression of gliogenesis. On the other hand, the high activity of MMPs associated with microglial cells implicate their involvement in the mechanism participating in OGD-induced cell damage.