PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 2 |

Tytuł artykułu

The prediction of hull gesture and flow around ship based on Taylor expansion boundary element method

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Based on the potential flow theory and traditional boundary element method (BEM), Taylor expansion boundary element method (TEBEM) is introduced in this paper for the prediction of the flow field around ship, as a result, hull gesture and pressure distribution on hull surface are obtained. By this method, dipole strength of every field point is expanded in Taylor expansion, so that approximately continuous hull and free surface boundary condition could be achieved. To close the new equation system, the boundary condition of tangent velocity in every control point is introduced. With the simultaneous solving of hull boundary condition and free surface condition, the disturbance velocity potential could be obtained. The present method is used to predict the flow field and hull gesture of Wigley parabolic hull, Series 60 and KVLCC2 models. To validate the numerical model for full form ship, the wave profile, the computed hull gesture and hull surface pressure of KVLCC2 model are compared with experimental results

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

p.198-211,fig.,ref.

Twórcy

autor
  • College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
autor
  • College of Ocean Science and Engineering of SMU, Shanghai Maritime University, Shanghai, China

Bibliografia

  • 1. Chen J.K., Duan W.Y., Zhao B.B., Ma Q.W. : Time domain hybrid TEBEM for 3D hydrodynamics of ship with large flare at forward speed. The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, , 2017, pp. 23-26.
  • 2. Dai, Y. : Potential flow theory of ship motions in waves. National Defense Industry Publication, Beijing, , 2008. 11-33.
  • 3. Dawson C.W.: A practical computer method for solving ship-wave problems. In: Proceedings of Second International Conference on Numerical Ship Hydrodynamics, pp. 30-38.
  • 4. Doctors L.J., 2006. A numerical study of the resistance of transom-stern monohulls. In: Fifth International Conference on High-Performance Marine Vehicles, 1977, pp. 1-14.
  • 5. Doctors L.J., Macfarlane G.J., Young R. : A study of transom-stern ventilation. In: International Shipbuilding Progress, 54, 2007, pp. 145-163.
  • 6. Duan W.Y. : Taylor expansion boundary element method for floating body hydrodynamics. In: 27th International Workshop on Water Waves and Floating Bodies, 2012. Copenhagen, Danmark.
  • 7. Duan W.Y., Chen, J.K., Zhao, B.B. : Second-order Taylor expansion boundary element method for the second-order wave radiation problem. Applied Ocean Research, 52, 2015, pp. 12-26.
  • 8. IHI, SRI, U. of Tokyo and Yokohama N.U. : Cooperative experiments on Wigley parabolic models in Japan, 1983.
  • 9. Guha A., Falzaranoa J. : Application of multi-objective genetic algorithm in ship hull optimization. Ocean System Engineering, Vol. 5, No. 2 (2015) , pp. 91-107.
  • 10. Larsson L., Stern F., Visonneau M.: A workshop on numerical ship hydrodynamics. Gothenburg, Sweden, 2010.
  • 11. Lu Y., Chang X., Hu A.K.: A hydrodynamic optimization design methodology for a ship bulbous bow under multiple operating conditions. Engineering Applications of Computational Fluid Mechanics, Vol. 10, 2016, No. 1, pp. 330–345.
  • 12. Minchev A., Schmidt M., Schnack S. : Contemporary bulk carrier design to meet IMO EEDI requirements.Third International Symposium on Marine Propulsors, Launceston, Tasmania, 2013.
  • 13. Nakos, D. E.: Ship wave patterns and motions by a three dimensional Rankine panel method. Massachusetts Institute of Technology, 1990.
  • 14 . Peng H., Ni S., Qiu W.: Wave pattern and resistance prediction for ships of full form. Ocean Engineering, 87, 2014 , pp. 162-173.
  • 15. Raven H.C. :. Nonlinear ship wave calculations using the rapid method. In: Sixth International Conference on Numerical Ship Hydrodynamics, Iowa City, 1994
  • 16. Raven H.C.: A solution method for the nonlinear ship wave resistance problem. A Dissertation for the Degree of Doctor., Delft University of Technology, 1996.
  • 17. Sherbaz S.: Ship Trim Optimization for Reducing Resistance by CFD Simulations. A Dissertation for the Degree of Doctor, Harbin Engineering University, 2014.
  • 18. Sun J.L., Tu H.W., Chen Y.N., Xie D., Zhou J.J.: A study on trim optimization for a container ship based on effects due to resistance. Journal of Ship Research, Vol. 60, 2016, No. 1, pp. 30–47
  • 19. Tarafder M.S., Alia M.T., Nizamb M.S. : Numerical prediction of wave-making resistance of pentamaran in unbounded water using a surface panel method. Procedia Engineering, 56, 2013, pp. 287-296.
  • 20. Takeshi H., Hino T., Hinatsu M., Tsukada Y., Fujisawa J.: ITTC Cooperative Experiments on a Series 60 Model at Ship Research Institute-Flow Measurements and Resistance Te s t , 1987
  • 21. Tarafder M.S., Suzuki K. : Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method. Ocean Engineering, 35, 2008, pp. 536-544.
  • 22. Tarafder M.S., Suzuki K.: Wave-making resistance of a catamaran hull in shallow water using a potential-based panel method. Journal of Ship Research, 52(1), 2008, pp. 16 -29.
  • 23. Toda Y., Stern F., Longo J. : Mean-flow measurements in the boundary layer and wake and wave field of a Series 60 CB=0.6 ship model for Froude Numbers 0.16 and 0.316. IIHR Report, No. 352, 1991.
  • 24. Zhang B.J. The optimization of the hull form with the minimum wave making resistance based on Rankine source method. Journal of hydrodynamics, 21(2) , 2009, pp. 277-284.
  • 25. Zhang B.J., Miao A.: The design of a hull form with the minimum total resistance. Journal of Marine Science and Technology, 23(5) , 2015, pp. 591-597
  • 26. Zhang B.J., Miao A. : Research on design method of the full form ship with minimum thrust deduction factor, China Ocean Eng., 29(2), 2015, pp. 301-310

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b25c27c2-b241-4c29-8a58-e2d36d7c34c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.