PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 50 | 2 |

Tytuł artykułu

Seasonal and daily variability of CO2 emissions from the Czerwone Bagno peat bog in Biebrza National Park (Poland)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The article describes the results of field studies carried out in the period from April 2013 to May 2014. The study concerned the assessment of the magnitude of CO₂ emissions from marsh soils in the area of Czerwone Bagno (Red Swamp), which is a part of the largest complex of marsh in Poland. The authors used the closed chamber method to measure seasonal variability of net ecosystem CO₂ emission and drew attention to the impact of environmental factors (air temperature, air pressure and soil moisture) on it. The highest values of average daily CO₂ emission (over 630 mg(CO₂)×m⁻²×h⁻¹) were recorded in late spring and summer. Lowest values were obtained in late autumn and winter (in the range of 178-212 mg(CO₂)×m⁻²×h⁻¹). The need for monitoring of wetlands in temperate latitudes is stressed due to the progressive process of wetlands drying which enables the release of large quantities of greenhouse gases – CO₂, CH₄ – into the atmosphere.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

50

Numer

2

Opis fizyczny

p.217-235,fig.,ref.

Twórcy

autor
  • Sub-Department of Environmental Dynamics and Soil Science, Department of Physical Geography, University of Lodz, Narutowicza 88, 90-139 Lodz, Poland
  • Sub-Department of Environmental Dynamics and Soil Science, Department of Physical Geography, University of Lodz, Narutowicza 88, 90-139 Lodz, Poland

Bibliografia

  • Alm, J., Shurpali, N.J., Tuittila, E-S., Laurila, T., Maljanen, M., Saarnio, S., Minkkinen, K. (2007), Methods for determining emission factors for the use of peat and peatlands – flux measurements and modelling. Boreal Environment Research, 12, 85-100.
  • Ambus, P., Robertson, G.P. (1999), Automated near-continuous measurement of carbon dioxide and nitrous oxide fluxes from soil. Soil Science Society of America Journal, 79, 5-13.
  • Artz, R.R.E., Chapman, S.J., Saunders, M., Evans, C.D., Matthews, R.B. (2013), Comment on “Soil CO2, CH4 and N2O fluxes from an afforested lowland raised peat bog in Scotland: implications for drainage and restoration” by Yamulki et al. (2013). Biogeosciences, 10, 7623-7630.
  • Bellisario, L.M., Moore, T.R., Bubier, J.L. (1998), Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Ecoscience, 5(4), 534-541.
  • Boardman, C.P., Gauci, V., Watson, J.S., Blake, S., Beerling, D.J. (2011), Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens. New Phytologist, 192, 898-911.
  • Borken, W., Davidson, E.A., Savage, K., Gaudinski, J., Trumbore, S.E. (2003), Drying and Wetting Effects on Carbon Dioxide Release from Organic Horizons. Soil Science Society of America Journal, 67, 1888-1896.
  • Bubier, J.L., Crill, P.M., Moore T.R., Savage, K., Varner, R.K. (1998), Seasonal patterns and control of net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochemical Cycles, 12(4), 703-714.
  • Davidson, E.A., Belk, E., Boone, R.D. (1998), Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227.
  • Davidson, E.A., Verchot, L.V., Cattânio, J.H., Ackerman, I.L., Carvalho, J.E.M. (2000), Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69.
  • Falkowski, T., Złotoszewska-Niedziałek, H. (2008), Ascertainment of the geological structure for the Czerwone Bagno reserve underground water feeding model. Biuletyn Państwowego Instytutu Geologicznego, 431, 35-40, (in Polish).
  • Fortuniak, K., Pawlak, W., Bednorz, L., Grygoruk, M., Siedlecki, M., Zieliński, M. (2016), The methane and carbon dioxide fluxes on a temperate mire in Central Europe. Agricultural and Forest Meteorology. 232, 306–318.
  • Glatzel, S., Basiliko, N., Moore, T. (2004), Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands, 24(2), 261-267.
  • Glina, B., Bogacz, A., Gulyás, m., zawieja, B., Gajewski, P., kaczmarek, z., 2016. The effect of long-term forestry drainage on the current state of peatland soils: A case study from the Central Sudetes, SW Poland. mires and Peat, 18, 21: 1–11, doi: 10.19189/maP.2016.omB.239.
  • Glina, B., Waroszewski, J., Bogacz, A., Majewski, W., Kaczmarek, T., Gajewski, P., Kaczmarek, Z., 2017. Sand removal from sandstone cliffs as the main factor inflencing properties of organic soils – a case study of transitional bog in the Stołowe Mountains. Polish Journal of Soil Science, 50, 1: 21–30, doi: 10.17951/pjss/2017.50.1.21
  • Gorham, E. (1991), Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
  • Heller, C., Zeitz, J., 2012. Stability of soil organic matter in two northeastern German fen soils: the influence of site and soil development. journal ofsoils and sediments, 12, 8: 1231–1240, doi: 10.1007/s11368-012-0500-6
  • Huth, H., Jurasinski, W., Glatzel, S. (2012), Winter emissions of carbon dioxide, methane and nitrous oxide from a minerotrophic fen under nature conservation management in north-east Germany. Mires and Peat, 10(article 4), 1-13.
  • Jacobs, A.F.G., Ronda, R.J., Holtslag, A.A.M. (2003), Water vapour and carbon dioxide fluxes over bog vegetation. Agricultural and Forest Meteorology, 116, 103-112.
  • Jarnuszewski, G. (2016), Characterization of some physical and chemical properties of post-bog soils developed from limnic deposits in vicinity of lake Dubie (Western Pomerania, NW Poland). Soil Science Annual, 67(1), 24-31, (in Polish).
  • Jauhiainen, J., Hooijer, A., Page, S.E. (2012), Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences, 9, 617-630.
  • Johnson, D.W., Hungate, B.A., Dijkstra, P., Hymus, G., Drake, B. (2001), Effects of Elevated Carbon Dioxide on Soils in a Florida Scrub Oak Ecosystem. Journal of Environmental Quality, 30, 501-507.
  • Juszczak, R., Acosta, M., Olejnik, J. (2012), Comparison of daytime and nighttime ecosystem respiration measured by the closed chamber technique on a temperate mire in Poland. Polish Journal of Environmental Studies, 21(3), 643-658.
  • Kabała C., Świtoniak M., Charzyński P. (2016) Correlation between the Polish Soil Classification (2011) and international soil classification system World Reference Base for Soil Resources (2015). Soil Science Annual, 67(2), 88-100.
  • Kalisz, B., Łachacz, A., Głażewski, R., 2010. Transformation of some organic matter components in organic soils exposed to drainage. Turkish journal of Agriculture and Forestry, 34: 245–256, doi: 10.3906/tar-0905-33.
  • Kalisz, B., Łachacz, A., Głażewski, R., 2015. Effects of peat drainage on labile organic carbon and water repellency in NE Poland. Turkish journal of Agriculture and Forestry, 39: 20–27, doi: 10.3906/tar-1402-66.
  • Kondracki, J. (2013), Regional Geography of Poland. Państwowe Wydawnictwo Naukowe, Warszawa, 432 pp.
  • Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., Lohila, A. (2014), Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil. Biogeosciences, 11, 347-363.
  • Krysiak S., Tołoczko W., Niewiadomski A. (2010) CO2 respiration in soils of field ecosystems formed from different origin parent material. Ochrona Środowiska i Zasobów Naturalnych, 42, 144-150, (in Polish). http://www.ios.edu.pl/pol/pliki/nr42/nr42_15.pdf
  • Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykanen, H., Shurpali, N.J., Martikainen, P.J., Alm, J., Wilmking, M. (2007), CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences, 4, 1005-1025.
  • Lafleur, P.M., Roulet N.T., Admiral, S.W. (2001), Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research, 106(D3), 3071-3081.
  • Lauber-Sauheittl, K., Fu, R., Voigt, C., Freibauer, A. (2014), High CO2 fluxes from grassland on histic Gleysol along soil carbon and drainage gradients. Biogeosciences, 11, 749-761.
  • Liang, N., Inoue, G., Fujinuma, Y. (2003), A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux. Tree Physiology, 23, 825-832.
  • Lindsay, R. (2010), Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change. RSPB Scotland, 344 pp.
  • Łajczak, A., 2013. Role of land relief and structure in the formation of peat bogs in mountain areas, as exemplifid by the Polish Carpathians. Landform Analysis, 22: 61–73, doi: 10.12657/landfana.022.005.
  • McNeil, P., Waddington, J.M. (2003), Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. Journal of Applied Ecology, 40, 354-367.
  • Minkkinen, K., Laine, J. (1996), Effect of forrest drainage on the peat bulk density and carbon stores of Finnish mires. [in] Northern Peatlands in global climatic change. Academy of Finland, Hyytiala, Finland, 236-241.
  • Montanarella, L., Jones R.J.A., Hiederer R. (2006), The distribution of peatland in Europe. Mires and Peat, 1, 1-10.
  • Moore, T.R., Bubier, J.L., Frolking, S.E., Lafleur, P.M., Roulet, N.T. (2002), Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 90, 25-36.
  • Moore, T.R., Dalva, M. (1993), The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science, 44, 651-664.
  • Moore, T.R., Knowles, R. (1989), The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science, 69, 33-38.
  • Nakano, T., Sawamoto, T., Morishita, T., Inoue, G., Hatano, R., 2004. A comparison of regression methods for estimating soil-atmosphere diffusion gas flxes by a closed-chamber technique. Soil Biology and Biochemistry, 36: 107–113.
  • Niewiadomski A., Tołoczko W. (2016), Practical aspects of the chamber techniques used in the measurements of exhalation of gases from soil into the atmosphere. 127-144. [in] Wybrane problemy pomiarów wymiany gazowej pomiędzy powierzchnią ziemi a atmosferą na terenach bagiennych. (edit. K. Fortuniak), Katedra Meteorologii i Klimatologii, WNG, University of Lodz, 144 p., (in Polish). http://dspace.uni.lodz.pl:8080/xmlui/handle/11089/20362
  • Oleszczuk, R., Brandyk, T. (2008), The analysis of shrinkage-swelling behaviour of peat-moorsh soil aggregates during drying-wetting cycles. Agronomy Research, 6(1), 131-140.
  • Panikov, N.S., Dedysh, S.N. (2000), Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochemical Cycles, 14(4), 1071-1080.
  • Papińska, E., Michalska-Hejduk, D., Niewiadomski, A., Tołoczko, W. (2010), CO2 emission from forest and meadow soils on locations of Bolimowski Landscape Park. Ochrona Środowiska i Zasobów Naturalnych, 42, 136-143, (in Polish). http://www.ios.edu.pl/pol/pliki/nr42/nr42_14.pdf
  • Parkin, T.B., Venterea, R.T. (2010), Sampling Protocols. Chapter 3. Chamber-Based Trace Gas Flux Measurements. [w:] R. F. Follett (ed.) Sampling Protocols, 1-39.
  • Pawlak, W., Fortuniak, W., Siedlecki, M., Kłysik, K. (2012), Selected methodological problems of carbon dioxide turbulent exchange measurements on wetland– Biebrza National Park 2010. Przegląd Geofizyczny, 57(2), 101-111, (in Polish).
  • Pawlak, W., Fortuniak., K., Siedlecki, M., Zieliński, M. (2016), Urban – Wetland contrast in turbulent exchange of methane, Atmospheric Environment, 145, 176-191.
  • Raich, J.W., Schlesinger, W.H. (1992), The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-90.
  • Riederer, M., Serafimovich, A., Foken T. (2014), Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions. Atmospheric Measurement Techniques, 7, 1057-1064.
  • Rochette, P., Hutchinson, G. L. (2005), Measurement of Soil Respiration in situ: Chamber Techniques. USDA-ARS/UNL Faculty, 1379(12), 247-286.
  • Schindlbacher, A., Jandl, A., Schindlbacher, S. (2014), Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest. Global Change Biology, 20, 622-632.
  • Schneider, M., Kutzbach, L., Schulz, S., Wilmking, M. (2009), Overestimation of CO2 respiration fluxes by the closed chamber method in low-turbulence nighttime conditions. Journal of Geophysical Research, 114, G03005, 1-10.
  • Seasonal Bulletin on the climate of the WMO Region VI – Europe and Middle East (2014), available online: http://www.seevccc.rs/SEECOF/SEECOF-11/STEP%201/RCC_CM_DWD_SeasonalClimReport_2013_2014_DJF.pdf
  • Świtoniak M., Kabała C., Charzyński P. (2016), Proposal of English equivalents for the soil taxa names in the Polish Soils Classification. Soil Science Annual, 67(3), 103-116.
  • Tang, X.L., Zhou, G.Y., Liu, S.G., Zhang, D.Q., Liu, S.Z., Li, J., Zhou, C.Y. (2006), Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China. Journal of Integrative Plant Biology, 48(6), 654-663.
  • Thomas, K.L., Benstead, J., Davies, K.L., Lloyd, D. (1996), Role of wetland plants in the diurnal control of CH4, and CO2 fluxes in peat. Soil Biology and Biochemistry, 28, 11-23.
  • Tołoczko W., Niewiadomski A. (2010), Easy way to assay the amount of CO2 released from soil. Ochrona Środowiska i Zasobów Naturalnych, 42, 151-157, (in Polish). http://www.ios.edu.pl/pol/pliki/nr42/nr42_16.pdf
  • Tołoczko, W., Niewiadomski, A. (2015), Measurements of selected greenhouse gases exhalation by using the closed-chamber technique and calculation of hour expiration with regard to CO2 emissions. Folia Geographica Physica, 14, 69-74. http://dspace.uni.lodz.pl:8080/xmlui/handle/11089/17213
  • Turcu, V.E., Jones, S.B., Or, D. (2005), Continuous Soil Carbon Dioxide and Oxygen Measurements and Estimation of Gradient-Based Gaseous Flux. Vadose Zone Journal, 4, 1161-1169.
  • Tüfekçioĝlu, A., Küçük, M. (2004), Soil Respiration in Young and Old Oriental Spruce Stands and in Adjacent Grasslands in Artvin, Turkey. Turkish Journal of Agriculture and Forestry, 28, 429-434.
  • Updegraff, K., Pastor, J., Bridgham, S.D., Johnston, C.A. (1995), Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications, 5, 151-163.
  • Urbanova, Z., Picek, T., Tuittila, E-S. (2013), Sensitivity of carbon gas fluxes to weather variability on pristine, drained and rewetted temperate bogs. Mires and Peat, 11(article 4), 1-14.
  • Vuorinen, M., Kurkela, T. (1993), Concentration of CO2 under snow cover and the winter activity of the snow blight fungus Phacidium infestans. European Journal of Forest Pathology, 23(6-7), 441-447.
  • Welles, J.M., Demetriades-Shah, T. H., McDermitt, D. K. (2001), Considerations for measuring ground CO2 effluxes with chambers. Chemical Geology, 177(1-2), 3-13.
  • Wroński, K. (2014), Carbon dioxide fluxes from forest and meadow soils in Lodz region and human impact onto this process. [w:] Machowski R., Rzętała M. A (red.), Z badań nad wpływem antropopresji na środowisko, T. 15, 98-107, (in Polish).
  • Zimov, S.A., Zimova, G.M., Davidov, S.P., Davidova, A.I., Voropaev, Y.V., Voropaeva, Z.V., Prosiannikov, S.F., Prosiannikova, O.V., Semiletova, I.V., Semiletov, I.P. (1993), Winter biotic activity and production of CO2 in Siberian soils. A factor in the greenhouse effect. Journal of Geophysical Research, 98, 5017-5023.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b23bc724-23f7-4394-9fa7-ce34a6bf6c30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.