PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2004 | 63 | 4 |

Tytuł artykułu

Geometrical assessment of the foetal lumbar vertebral column - clinical implications

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The neural arches, transverse processes, spinous processes, and superior and inferior articular processes of each of the 5 lumbar vertebrae can often be found under the common heading of ‘posterior element’. The aim of our study was to assess the changes in geometry of the posterior elements of the foetal lumbar vertebrae during the foetal period. A total of 50 human foetuses, both female and male, from natural abortions, C-R length ranging from 58 to 220 mm, were examined. The methodology of the research included classical anatomical preparation, detailed measurements of the structural elements of the lumbar vertebrae and statistical analysis. Geometrical reconstruction was subsequently performed. The shape of the posterior elements changed gradually from wide and massive to slender. We observed a descending sequence of these alterations, the first vertebra to change being L₁, with L₅ the last. The dynamic of the change was at its greatest during the first 4 weeks of the period evaluated. On the basis of our observations we concluded that the geometry of the posterior elements of the lumbar vertebrae undergoes a process of a great transformation during the foetal period, a process which progresses dynamically until the 14th week of intra-uterine development. The associations with micro-angiogenesis, the ossification process and the notion of structural adaptation of the lumbar spine to heightening mechanical stress are also discussed.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

63

Numer

4

Opis fizyczny

p.431-438,fig.,ref.

Twórcy

autor
  • Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
autor

Bibliografia

  • 1. Aaronson OS, Hernaz-Schulman M, Bruner JP, Reed GW, Tulipan NB (2003) Myelomeningocele: prenatal evaluation – comparison between transabdominal US and MR imaging. Radiology, 227: 839–843.
  • 2. Bardeen CR (1905) The development of the thoracic vertebrae in man. Am J Anat, 4: 163–174.
  • 3. Bareggi R, Grill V, Zweyer M, Narduci P, Forabosco A (1994) A quantitative study on the spatial and temporal ossification patterns of the vertebral centra and neural arches and their relationship to the fetal age. Ann Anat, 176: 311–317.
  • 4. Basu PS, Elsebaie H, Noordeen MH (2002) Congenital spinal deformity. A comprehensive assessment at presentation. Spine, 27: 2225–2259.
  • 5. Birnholz JC (1986) Fetal lumbar spine: measuring axial growth with US. Radiology, 158: 805–807.
  • 6. Blaas HG, Eik-Nes SH, Isaksen CV (2000) The detection of spina bifida before 10 gestational weeks using twoand three-dimensional ultrasound. Ultrasound Obstet Gynecol, 16: 25–29.
  • 7. Cinotti G, De Santis P, Nofroni I, Postacchini F (2002) Stenosis of lumbar intervertebral foramen. Anatomic study of predisposing factors. Spine, 27: 232–229.
  • 8. Czyż M, Kędzia A (2003) Preliminary metrological study of the lumbar vertebral column during the foetal period. Folia Morphol, 62: 259–262.
  • 9. Czyż M, Kędzia A (2003) Komputerowa analiza wytrzymałościowa numerycznego modelu kręgu lędźwiowego płodu. X KK KOWBAN 2003. Proceedings of the 10th National Conference on Supporting Research Projects by Computer Techniques; 2002 October 22–24; Wrocław, Polanica Zdrój, Poland, pp. 99–104.
  • 10. Finnel RH, Gould A, Spiegelstein O (2003) Pathobiology and genetics of neural tube defects. Epilepsia, 44: 14–23.
  • 11. Frey L, Hauser W (2003) Epidemiology of neural tube defects. Epilepsia, 44: 1–13.
  • 12. Isaksen CV, Eik-Nes SH, Blass HG, Torp SH, Van Der Hagen CB, Ormerod E (2000) A correlative study of prenatal ultrasound and post-mortem findings in fetus and infants with an abnormal karyotype. Ultrasound Obstet Gynecol, 16: 37–45.
  • 13. Jeffrey JE, Campbell DM, Golden MH, Smith FW, Porter RW (2003) Antenatal factors in the development of the lumbar vertebral canal. Spine, 28: 1418–1423.
  • 14. Jenis LG, An HS (2000) Spine update. Lumbar foraminal stenosis. Spine, 25: 389–394.
  • 15. Keeling JW, Hansen B, Kjaer I (1997) Pattern of malformations in the axial skeleton in human trisomy 21 fetuses. Am J Med Genet, 68: 466–471.
  • 16. Kędzia A, Czyż M (2003) Ossification process and lumbar spine morphology in the prenatal period. Med Sci Monit, 9: 343–350.
  • 17. McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 vertebrae. Comparison of large animal models for the human lumbar spine. Spine, 27: E200–E206.
  • 18. McMaster MJ (1998) Congenital scoliosis caused by a unilateral failure of vertebral segmentation with a contralateral hemivertebra. Spine, 23: 998–1005.
  • 19. McMaster MJ, Singh H (2001) The surgical management of congenital kyphosis and kyphoscoliosis. Spine, 26: 2146–2155.
  • 20. Nolting D, Hansen BF, Keeling JW, Kjaer I (2002) Histological examinations of bone and cartilage in the axial skeleton of human triploidy fetuses. APMIS, 110: 186–192.
  • 21. Nolting D, Hansen BF, Keeling JW, Reintoft I, Kjaer I (2000) Prenatal malformed lumbar vertebral corpora in trisomies 21, 18, and 13, evaluated radiographically and histologically. APMIS, 108: 422–428.
  • 22. O’Rahilly R, Muller F, Meyer DB (1980) The human vetebral column at the embryonic period proper. 1. The column as a whole. J Anat, 131: 565–575.
  • 23. Panattoni GL, Todros T (1989) Fetal motor activity and spine development. Panminerva Med, 31: 183–186.
  • 24. Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine, 17: 299–306.
  • 25. Papp T, Porter RW, Craig CE, Aspden RM, Campbell DM (1997) Significant antenatal factors in the development of lumbar spinal stenosis. Spine, 22: 1805–1810.
  • 26. Parent S, Labelle H, Skalli W, Latimer B, de Guise J (2002) Morphometric analysis of anatomic scoliotic specimens. Spine, 27: 2305–2311.
  • 27. Rouse GA, Filly RA, Toomey F, Grube GL (1990) Short-limb skleletal dysplasias: evaluation of the fetal spine with sonography and radiography. Radiology, 174: 177–180.
  • 28. Sagi HC, Jarvis JG, Uhthoff HK (1998) Histomorphic analysis of the development of the pars interarticularis and its association with isthmic spondylosis. Spine, 23: 1635–1640.
  • 29. Schild RL, Wallny T, Fimmers R, Hansmann M (2000) The size of the fetal thoracolumbar spine: a three-dimensional ultrasound study. Ultrasound Obstet Gynecol, 16: 468–472.
  • 30. Scoles PV, Linton AE, Latimer B, Levy ME, Digiovanni BF (1988) Vertebral body and posterior element morphology: the normal spine in middle life. Spine, 13: 1082–1086.
  • 31. Unsinn KM, Geley T, Freund MC, Gassner I (2000) US of the spinal cord in newborns: spectrum of normal findings, variants, congenital anomalies and acquired diseases. RadioGraphics, 20: 923–938.
  • 32. Ursu TR, Porter RW, Navaratnam V (1996) Development of the lumbar and sacral vertebral canal in utero. Spine, 21: 2705–2708.
  • 33. Wagenvoort AM, Bekker MN, Go AT, Vandenbussche FP, Van Buchem MA, Valk J, Van Vugt JM (2000) Ultrafast scan magnetic resonance in prenatal diagnosis. Fetal Diagn Ther, 15: 364–372.
  • 34. Wallny TA, Schild RL, Fimmers R, Wagner UA, Hansmann ME, Schmitt O (1999) The fetal spinal canal — a three-dimensional study. Ultrasound Med & Biol, 25: 1329–1333.
  • 35. Wild A, Jager M, Werner A, Eulert J, Krauspe R (2001) Treatment of congenital spondyloptosis in an 18-month-old patient with a 10-year follow-up. Spine, 26: 502–505.
  • 36. Zaretsky MV, McIntire DD, Twickler DM (2003) Feasibility of the fetal anatomic and maternal pelvic survey by magnetic resonance imaging at term. Am J Obstet Gynecol, 189: 997–1001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f958eb00-e421-4696-85e3-e99a31358191
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.