PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 2 |

Tytuł artykułu

Utilization of shrimp waste as a respiration substrate by planktonic and benthic microorganisms

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study presents results of research on the number of heterotrophic bacteria and fungi in water and bottom sediments of Lake Chełmżyńskie and their role in the decomposition of chitin. The authors also examined the level of respiration activity of water and sediment microorganisms in the presence of shrimp waste. Results demonstrate that the number of heterotrophic bacteria and fungi in water and bottom sediments were variable. The analyzed groups of microorganisms predominated in bottom sediments with the number of heterotrophic bacteria significantly exceeding that of fungi. The proportion of microorganisms capable of decomposing chitin was greater among fungi than among heterotrophic bacteria. In water chitinolytic bacteria constituted 11–19% of the total number of heterotrophic bacteria and in bottom sediments only 3–8%. Chitinolytic fungi constituted 17–67% and dominated in water. In the presence of shrimp waste, the level of respiration activity of microorganisms in water and bottom sediments of Lake Chełmżyńskie clearly depended on examined factors. The temperature, incubation time, and type of respiration substrate had a statistically significant impact on this activity. The highest respiration activity (2.4–90.3 mg O₂ · dm⁻³) of aquatic microorganisms was recorded in the summer, when the water temperature equaled 24°C. In bottom sediments the highest values of respiration activity also were observed in summer (13.4–447.4 mg O₂ g⁻¹ dry mass) but alkaline sediments were characterized by higher activity levels. Benthic and planktonic microorganisms were utilizing shrimp heads most effectively and the exoskeletons least effectively.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.273-282,fig.,ref.

Twórcy

  • Nicolaus Copernicus University, Gagarina 9, 87-100 Torun, Poland
autor

Bibliografia

  • 1. HERWIG R. P., PELLERIN N. B., IRGGENS R. L., MAKI J. S., STALEY J. T. Chitinolytic bacteria and chitin mineralization in the marine waters and sediments along the Antarctic Peninsula. FEMS Microbial. Ecol. 53, 101, 1988.
  • 2. BRENDT A., HÜLLER H., KAMMEL U., HELMKE E., SCHWEDER T. Cloning, expression and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. Strain Fi:7. Extremophiles, 5, 119, 2001.
  • 3. CLARKE A. The biochemical composition of krill, Euphausia superba, from south Geeorgia. J. Exp. Mar. Biol. Ecol. 43, 221, 1980.
  • 4. JERDE C. W., LASKER R. Molting of Euphausia shrimp: shipboard observations. Limnol. Oceanography. 11, 120, 1996.
  • 5. YU C. LEE A. M., BASSLER B. L., ROSEMAN S. Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J. Biol. Chem. 266, 24260, 1991.
  • 6. BOYER J. N. Aerobic and anaerobic degradation and mineralization of C-chitin by water column and sediment inocula of the York River estuary, Virginia. Appl. Environ. Microbial. 60, 174, 1994.
  • 7. POULICEK M., JEUNIAUX C. Chitin biodegradation in marine environments: an experimental approach.Biochem. System. Ecol. 19, 385, 1991.
  • 8. JASZKOWSKI K. Chitin could heal. Focus 8 (71), 2001.
  • 9. BEDNAREK R., DZIADOWIEC H., POKOJSKA U., PRUSINKIEWICZ Z. Ecology and soil science related research. Publishing House Science and Research PWN. 2004.
  • 10. HOPPE H.G. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurements of bacteria, p. 509-512. [In:] Handbook of methods in aquatic microbial. Ecology. [Ed.] Kemp P.F., Sherr B. F., Cole J.J., Lewis, London. 1993.
  • 11. MARTINEZ J., SMITH D. C., STEWARD G. F., AZAM F. Variability in ectohygrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquatic Microbial Ecology. 10, 223, 1996.
  • 12. WTW. Bedienungsanleitung System OxiTop® Control. Wissenschaftlich-technische Werkstätten (WTW), Weilheim. 1997.
  • 13. WTW. Applikationsbericht BSB 997 230: Respirometrische BSB5-Bestimmung von häuslichem Abwasser mit dem OxiTop® Control – oder OxiTop®-Messystem. Wissenschaftlich-technische Werkstätten (WTW), Weilheim. 1998.
  • 14. PLATEN H, WIRTZ A. The measurement of respiration activity soil with a respirometric method (measuring system Oxi Top Control). WTW/OxiTop ®/Appliance. 1999.
  • 15. KOPEČNÝ J., HODRAOVÁ B., STEWART C. S. The isolation and characterization of a rumen chitinolytic bacterium. App. Microbial., 23, 195, 1996.
  • 16. NICOL S. Life after death for empty shells. New Sci. 129, 46, 1991.
  • 17. AYE K. N., KARUPPUSWAMY R., AHAMED T., STEVENS W. T. Peripheral enzymatic deacetylation of chitinand reprecipitated chitin particles. Biores. Technol. 97, 557, 2006.
  • 18. HE H., CHEN X., SUN C., ZHANG Y., GAO P. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis)treated with crude protease from Bacillus sp. Sm98011. Biores. Technol. 97, 385, 2006.
  • 19. WANG S. L., HUANG J. R. Microbial reclamation of shellfish waste fort he production of chitinases. Enzyme Microb. Technol. 28, 376, 2001.
  • 20. PALUCH J. NIEWOLAK S. Microbiology of water. Warszawa, 1973. [In Polish]
  • 21. SWIONTEK BRZEZINSKA M. Occurrence and activity of chitinolytic bacteria of different trophy. Doctoral thesis, Department of Environmental Microbiology and Biotechnology, UMK, Torun, 2004. [In Polish]
  • 22. DONDERSKI W. Chitinolytic bacteria in water and bottom sediments of two lake of different trophy. Acta Microbial. Pol. 2, 163, 1984.
  • 23. MUDRYK Z. The role of heterotrophic bacteria in the decomposition processes of some macromolecular compounds in the estuarine Gardno Lake, Pol. Arch. Hydrobiol. 38, 153, 1991.
  • 24. PODGÓRSKA B. The role of bacteria in transformation of organic matter of sandy beach ecotones of the Baltic sea. Doctoral thesis. Institute of Oceanography PAN (Polish Academy of Science), Sopot; 2002. [In Polish]
  • 25. SKÓRCZEWSKI P. The role of bacterioneuston and bacterioplankton in transformation of organic matter in estuarine lake Gardno. Doctoral thesis. PAP, Słupsk, 2003. [In Polish]
  • 26. SUGITA H., OSHIMA K., FUSHION T., DEGUCHIO Y. Substrate specify of heterotrophic bacteria in the water and sediment of carp culture pond. Aquaculture, 64, 39, 1987.
  • 27. HUFSCHMID A., BECKER-VAN SLOOTEN K., STRAWCZYNSKI A., VIOGET P., PARRA S., PÃRINGER P., PULGARIN C. BOD5 measurements of water presenting inhibitory Cu2+. Implications in using of BOD to evaluate biodegradability of industrial wastwwaters. Chemosphere 50, 171, 2003.
  • 28. VÄHÄOJA P., KUOKKANEM T., VÄLIMÄKI I., VUOTI S., PERÄMÄKI. Biodegradabilities of some chain oils in groundwater as determined by the respirometric BOD OxiTop method. Anal Bioanal Chem. 381, 225, 2005.
  • 29. REUSCHENBACH P., PAGGA U., STROTMANN U. Water Res 37, 1571, 2003.
  • 30. DONDERSKI W. Aerobic heterotrophic bacteria lakes of different trophy. Wyd. UMK Torun, 1983. [In Polish]
  • 31. STRZELCZYK E., STOPIŃSKI M., MYZYK G. Studies on metabolic activity of single and mixed cultures of planktonic and benthic bacteria of two lakes different trophy. AUNC Torun Limnol. Papers 16, 3, 1988.
  • 32. MASSARDIER-NAGEOTTE V., PESTRE C., CRUARDPRADET T., BAYARD R. Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability 91, 620, 2006.
  • 33. GODLEWSKA – LIPOWA W. O2 – consumption as an indicator of heterotrophic activity of bacteria in lakes of different trophic conditions. Arch. Hydrobiol. Beih., 12, 11, 1979.
  • 34. DONDERSKI W., STRZELCZYK E. Manometric studies with bottom sediments of three lakes. Act Microbial. Pol. 29, 21, 1980.
  • 35. RHEINHEIMER G. Microbiology of water. PWRiL, Warszawa, 1987. [In Polish]
  • 36. EL – TARABILY K. A., SOLIMAN M. H., NASSAR A. H., AL – HASSANI H. A., SIVASITHAMPARAM K, MCKENNA F., HARDY G. E. ST. J. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathology 49, 573, 2000.
  • 37. WANG S. L., SHIH I. L., LIANG T. W., WANG C. H. purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V 656 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 50, 2241, 2002.
  • 38. WANG S. L., YIEH T. C., SHIH I. L. Purification and characterization of a new antifungal compound produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell power medium. Enzyme Microb. Technol. 25, 439, 1999.
  • 39. CHANG W-T., CHEN Y-CH., JAO CH-L. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technol. 98, 1224, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f481180d-57f1-49c2-bd55-903bf358d738
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.