PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 46 | Suppl. |

Tytuł artykułu

Reconstructing insect flight performance from fossil evidence

Autorzy

Języki publikacji

EN

Abstrakty

EN
Some structural characters and morphometric variables – size, body shape and proportions, wing shape and structure – that appear in insects to be linked with flight performance, are discussed and evaluated, and methods are described for deriving these from fossil material. Some wing design categories associated with particular flight techniques and capabilities are identified. Their use in reconstructing the flight performance of extinct insects is illustrated with reference to Carboniferous palaeodictyopteroids and Mesozoic palaeontinoid Hemiptera.

Wydawca

-

Rocznik

Tom

46

Numer

Opis fizyczny

p.89-99,fig.,ref.

Twórcy

autor
  • University of Exeter, Exeter EX4 4PS, U.K.

Bibliografia

  • BETTS C. R. 1986. Functioning of the wings and axillary sclerites of Heteroptera. Journal of Zoology, London (B), 1: 283-301.
  • BIRCH J. M., DICKINSON M. H. 2001. Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412: 729-733.
  • BRAUCKMANN C. 1991. Morphologie und Variabilität von Homoioptera vorhallensis (Insecta: Palaeodictyoptera; Ober-Karbon). Geologica et Palaeontologica, 25: 193-213.
  • BRODSKY A. K. 1994. The evolution of insect flight. Oxford Science Publications, Oxford.
  • BUNKER S. J. 1993. Form, flight pattern and performance in butterflies (Lepidoptera: Papilionoidea and Hesperioidea). PhD thesis, University of Exeter, Exeter.
  • CARPENTER F. M. 1951. Studies on Carboniferous insects from Commentry, France: part II. The Megasecoptera. Journal of Paleontology, 25: 336-355.
  • DICKINSON M. H., LEHMANN F.-O., SANE S. 1999. Wing rotation and the aerodynamic basis of insect flight. Science, 284: 1954-1960.
  • DUDLEY R. 2000. The biomechanics of insect flight. Princeton University Press, Princeton.
  • ELLINGTON C. P.1984a. The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society of London. Ser. B, 305: 17-40.
  • ELLINGTON C. P. 1984b. The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philosophical Transactions of the Royal Society of London. Ser. B, 305: 79-113.
  • ELLINGTON C. P., VAN DEN BERG C., WILLMOTT A. P., THOMAS A. L. R. 1996. Leading-edge vortices in insect flight. Nature, 284: 628-630.
  • ENNOS A. R. 1988. The importance of torsion in the design of insect wings. Journal of experimental Biology, 140: 137-160.
  • ENNOS A. R. 1989a. The comparative functional morphology of the wings of Diptera. Zoological Journal of the Linnaean Society, 96: 27-47.
  • ENNOS A. R. 1989b. The effect of size on the optimal shapes of gliding insects and seeds. Journal of Zoology, 219: 61-69.
  • ENNOS A. R., WOOTTON R. J. 1989. Functional wing morphology and aerodynamics of Panorpa germanica (Insecta: Mecoptera). Journal of experimental Biology, 143: 267-284.
  • GRODNITSKY D. L. 1999. Form and function in insect wings: the evolution of biological structures. Johns Hopkins University Press, Baltimore.
  • HERBERT R. C., YOUNG P. G., SMITH C. W., WOOTTON R. J., EVANS K. E. 2000. The hind wing of the desert locust (Schistocerca gregaria FORSKAL) III. A finite element analysis of a deployable structure. Journal of Experimental Biology, 203: 2945-2955.
  • ROHDENDORF B. B. 1949. Evolyutsia i klassifikatsiya letatelnogo apparata nasekomykh. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 16: 1-176.
  • USHERWOOD J. R., ELLINGTON C. P. (in press). The aerodynamics of revolving wings. Journal of Experimental Biology.
  • WEIS-FOGH T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of experimental Biology, 59:169-230.
  • WILLMOTT A. P., ELLINGTON C. P. 1997. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. Journal of experimental Biology, 200: 2705-2722.
  • WOOTTON R. J. 1991. The functional morphology of the wings of dragonflies. Advances in Odonatology, 5: 153-169.
  • WOOTTON R. J. 1995. Geometry and mechanics of insect hindwing fans: a modelling approach. Proceedings of the Royal Society, London (Ser. B), 262, 181-187.
  • WOOTTON R. J. 1996. Functional wing morphology in Hemiptera systematics. [In:] C. W. SCHAEFER (ed.) – Studies on Hemiptera phylogeny. Thomas Say Publications in Entomology: Proceedings, Lanham, Maryland. Pp. 179-198.
  • WOOTTON R. J. 2002. Design, function and evolution in the wings of holometabolous insects. Zoologica Scripta, 31: 31-40.
  • WOOTTON R. J., BETTS C. R. 1986. Homology and function in the wings of Heteroptera. Systematic Entomology, 11: 389-400.
  • WOOTTON R. J., ENNOS A. R. 1989. The implications of function on the origin and homologies of the dipterous wing. Systematic Entomology, 14: 507-520.
  • WOOTTON R. J., KUKALOVÁ-PECK J. 2000. Flight adaptations in palaeopterous insects. Biological Reviews, 75: 129-167.
  • WOOTTON R. J., EVANS K. E., HERBERT R., SMITH C. W. 2000. The hind wing of the desert locust (Schistocerca gregaria Forskåll). 1. Functional morphology and mode of operation. Journal of experimental Biology, 203: 2933-2943.
  • WOOTTON R. J., KUKALOVÁ-PECK J., NEWMAN, D. J. S., MUZÓN J. 1998. Smart engineering in the mid-Carboniferous: how well could Palaeozoic dragonflies fly? Science, 282: 749-751.

Identyfikator YADDA

bwmeta1.element.agro-article-f1025849-bdd4-4bf8-9577-a98b7aea63cc