PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2004 | 63 | 3 |

Tytuł artykułu

4-OH-TEMPO prevents the morphological alteration of rat thymocytes primed to apoptosis by oxidative stress inducer ButOOH

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Thymocytes exposed to the pro-oxidant tert–butyl-hydroperoxide (ButOOH) display a number of dramatic changes in morphology similar to those observed in the case of dexamethasone-treated cells. Both reagents induce nuclear chromatin peripheral aggregation below the nuclear membrane. Some nuclei themselves break up producing two or more fragments. ButOOH-treated cells are morphologically characterised by cell shrinkage, extensive surface blebbing and, finally, fragmentation into membrane–bound apoptotic bodies composed of cytoplasm and tightly packed with or without nuclear fragments. An increased level of lipid hydroxyperoxides was detected after exposure of thymocytes to ButOOH. Both oxidative stress markers and morphological damage to cells were prevented by the antioxidant 4-OH-TEMPO.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

63

Numer

3

Opis fizyczny

p.261-265,fig.,ref.

Twórcy

autor
  • Medical University, Debinki 1, 80-211 Gdansk, Poland
autor
autor
autor
autor
autor
autor
autor

Bibliografia

  • 1. Barr DP, Mason RP (1995) Mechanism of radical production from the reaction of cytochrome c with organic hydroperoxides. An ESR spin trapping investigation. J Biol Chem, 270: 12709–12716.
  • 2. Beckwith ALJ, Bowry VW, Moad G (1998) Kinetics of the coupling reactions of the nitroxyl radical 1,1,3,3,-tetramethylisoindoline-2-oxyl with carbon-centered radicals. J Org Chem, 53: 1632–1641.
  • 3. Beckwith ALJ, Bowry VW, Ingold KU (1992) Kinetics of nitroxyl radical trapping. 1. Solvent effects. J Am Chem Soc, 114: 4983–4992.
  • 4. Chateauneuf J, Lusztyk J, Ingold KU (1988) Absolute rate constants for the reaction of some carbon-centered radicals with 2,2,6,6-tetramethylpiperidine-N-oxyl. J Org Chem, 53: 1629–1632.
  • 5. Cheng WH, Fu YX, Porres JM, Ross DA, Lei XG (1999) Selenium-dependent cellular gluthatione peroxidase protects mice against a pro-oxidant-induced oxidation of NADPH, NADH, lipids, and protein. FASEB J, 13: 1467–1475.
  • 6. Damiani E, Kalińska B, Canapa A, Canestrari S, Woźniak M, Olmo E, Greci L (2000) The effects of nitroxide radicals on oxidative DNA damage. Free Radic Biol Med, 28: 1257–1265.
  • 7. Garcia de la Asunción J, Millãn A, Plã R, Bruseghini L, Esteras A, Pallardó FV, Sastre J, Viña J (1996) Mitochondrial gluthatione oxidation correlates with ageassociated oxidative damage to mitochondrial DNA. FASEB J, 10: 333–338.
  • 8. Halliwell B, Gutteridge JMC, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med, 119: 598–620.
  • 9. Imberti R, Nieminen AL, Herman B, Lemasters JJ (1993) Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporine A and trifluoperazine. J Pharmacol Exp Ther, 265: 392–400.
  • 10. Ji LL (1995) Oxidative stress and antioxidant response during exercise. Free Radic Biol Med, 6: 1079–1086.
  • 11. Klimek J, Woźniak M, Szymańska G, Żelewski L (1998) Inhibitory effect of free radical derived from organic hydroperoxide on progesterone synthesis in human term placental mitochondria. Free Radic Biol Med, 24: 1168–1175.
  • 12. Kozłowska M, Smoleński RT, Makarewicz W, Hoffmann C, Jastroff B, Świerczyński J (1999) ATP depletion, purine ribose triphosphate accumulation and rat thymocyte death induced by purine riboside. Toxicol Lett, 104: 171–181.
  • 13. Ku H, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydroperoxide production and longevity of mammalian species. Free Radic Biol Med, 15: 621–627.
  • 14. Masaki N, Kyle ME, Serroni A, Farber JL (1989) Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys, 270: 672–680.
  • 15. Mitchell JB, Samuni A, Krishna MC, DeGraff WG, Ahn MS, Samuni U, Russo A (1990) Biologically active metal-independent superoxide dismutase mimics. Biochemistry 29: 2802–2807.
  • 16. Nieminen AL, Byrne AM, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in hepatocytes induced by tert-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol, 272 (4 Pt 1): C1286–C1294.
  • 17. Nieminen AL, Saylor AK, Samuel AT, Herman B, Lemasters JL (1995) Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J, 307: 99–106.
  • 18. O’Donnel V, Burkit MJ (1994) Mitochondrial metabolism of a hydroperoxide to free radicals in human endothelial cells: an electron spin resonance spin-trapping investigation. Biochem J, 304: 707–713.
  • 19. Palozza P, Luberto C, Ricci P, Sgarlata E, Calviello G, Bartoli GM (1996) Effect of b-carotene and canthaxanthin on tert-butyl hedroperoxide-induced lipid peroxidation in murine normal and tumor thymocytes. Arch Biochem Biophys, 325: 145–151.
  • 20. Sastre S, Palladró FV, Viña J (2003) The role of mitochondrial oxidative stress in aging. Free Radic Biol Med, 35: 1–8.
  • 21. Schafer FQ, Yue Qian S, Buettner GR (2000) Iron and free radical oxidations in cell membranes. Cell Mol Biol, 46: 657–662.
  • 22. Sies H (1985) Oxidative stress. Academic Press. New York, London.
  • 23. Slater AF, Nobel CS, Maellaro E, Bustamante J, Kimland M, Orrenius S (1995) Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem J, 306: 771–778.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-de40a889-0371-43b1-a9fc-545385703114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.