PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 3 |

Tytuł artykułu

Role of conducting systems in the transduction of long-distance stress signals

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review presents recent knowledge concerning integration between the reception of signals about abiotic or biotic stress conditions and the delivery of information to individual, even remote organs. In further consequence - physiological processes are affected e.g. pattern of biomass partitioning and growth. Strategy of optimal distribution of photosynthates increases the acclimation to stresses. Special attention is paid to the role of phloem and xylem as a superhighway, rapidly transmitting signals as well as products of stress gene expression: RNAs, proteins, transcription factors. The regulation of plant responses to adverse conditions is carried from the molecular to the whole organism level, not only by the modulation of gene expression, their stimulation and silencing, but also by a post-transcriptional control. Various signalling molecules including hormones, salicylic acid and systemin, play a pivotal role in the regulation of plant response to stresses. They are trafficking into conducting bundles. Some physical factors such as hydraulic pressure and electrical signals, with a much higher transmission velocity than chemical signalling molecules, also regufate the responses of plants to stresses. Both kinds of signals are propagated systemically through the plant body in a controlled way, in many cases by phloem or xylem. Several recent papers present the hypothesis of selective phloem loading and unloading especially of some macromolecular substances and viruses. Their transport may be surveillance also inside the sieve tubes.

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.289-301,fig.,ref.

Twórcy

autor
  • Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Andersen P.C., Brodbeck B.V., Minzel R.F. 1995. Diurnal variations in tension, osmolarity, and the composition of nitrogen and carbon assimilates in xylem fluid of Prunus persica, Vitis hybrid and Pyrus communis. J. Am. Soc. Hort. Sci. 129: 600-606.
  • Balachandran S., Hull R.J., Martins R.A., Vaadia Y., Lucas W.J. 1997. Influence of environmental stress biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus. Plant Physiol. 114: 475-481.
  • Bano A., Dorffling K. 1992. Hormonal signals from root to shoot in xylem sap of rice plants in drying soil. International Rice-Research Newsletter. 17: (6):9.
  • Barnes A., Bale J., Canstantinidou C., Ashton P., Jones A., Pritchard J. 2004. Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J. Expt. Bot. 55: 1473-1481.
  • Baulcombe D. 2002. RNA silencing. Current Biol. 12: R82-R84.
  • Berleth T., Mattsson J. 2000. Vascular development: tracing signals along veins. Current Opinion in Plant Biology. 3: 406-411.
  • Beveridge C.A., Murfet I.C., Kerhoas L., Sotta B., Miginiac E., Rameau C. 1997. The shoot controls zeatin ribose export from pea roots. Evidence from the branching mutant rms4. PlantJ. 11: 339-345.
  • Boari F., Malone M. 1993. Wound-induced hydraulic signals: survey of occurrence in a range of species. J. Exp. Bot. 44: 741-746.
  • Bradtord K.J., Yang S.F. 1980. Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol. 65: 322-326.
  • Buhtz A., Kolasa A., Arlt K., Walz C., Kehr J. 2004. Xylem sap protein composition is conserved among different plant species. Planta. 219: 610-618.
  • Could N., Thorpe M.R., Koroleva O., Minchin P.E.H. 2005. Phloem hydrostatic pressure relates to solute loading rate: a direct test of the Munch hypothesis. Functional Plant Biol. 32: 1019-1026.
  • Davies W.J., Zhang J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76.
  • Ding B., Itaya A., Qi Y. 2003. Symplasmic protein and RNA traffic: regulatory points and regulatory factors. Current Opinion in Plant Biology. 6: 596-602.
  • Dziubińska H. 2003. Ways of signal transmission and physiological role of electrical potentials in plants. Acta Soc. Bot. Pol. 72: 309-318.
  • Faulkner C., Brandom J., Maule A., Oparka K. 2005. Plasmodesmata 2004. Surfing the symplasm. Plant Physiol. 137: 607-610.
  • Filek M., Kościelniak J. 1997. The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L. minor). Plant Science. 123: 39-46.
  • Foster T.M., Lough T.J., Emerson S.J., Lee R.H., Bowman J.R., Forster R.L.S., Lucas W.J. 2002. A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell. 14: 1497-1508.
  • Fromm J., Bauer T. 1994. Action potentials in maize sieve tubes change phloem translocation. J. Exp. Bot. 45: 463-469.
  • Fromm J., Fei H. 1998. Electrical signalling and gas exchange in maize plants of drying soil. Plant Science. 132: 203-213.
  • Fromm J., Eschrich W. 1993. Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. Plant Physiol. 141: 673-680.
  • Gatehouse J.A. 2002. Plant resistance toward insect herbivores: a dynamic interaction. New Phytologist. 156: 145-169.
  • Geiger D. R., Servaites J.C. 1991. Carbon allocation and response to stress. In: Response of plants to multiple stresses. Eds. Mooney H.E., Winner W.E., Pell E.J., Chu E. Academic Press Inc. 103-127.
  • Griffith M., Yaish W.F. 2004. Antifreese proteins in over wintering plants: tale of two activtties. Trends in Plant Science. 9: 399-405.
  • Hartung W., Peuke A.D., Davies W.J. 1999. Abscisic acid - a hormonal long-distance stress signal in plants under drought and salt stress. Handbook of plant and crop stress. 2-nd ed. M. Pessaraki Marcel Dekker. 731-746.
  • Hayashi H., Fukuda A., Suzui N., Fujimaki S. 2000. Proteins in the sieve element-companion cell complexes: their detection, localisation and possible functions. Aust. J. Plant Physiol. 27: 489-496.
  • Herde O., Pena-Cortes H., Willmitzer J., Fisahn J. 1998. Remote stimulation by heat induced characteristic membrane-potential responses in the veins of wild-type and abscisic acid -deficient tomato plants. Planta. 206: 146-153.
  • Hong J.K., Hwang B.K. 2002. Induction by pathogen, salt and drought of a basic class II chitinase mRNA and its in situ localisation in pepper (Capsicum annuum). Physiol. Plantarum. 114: 549-558.
  • Imlau A., Truernit E., Sauer N. 1999. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissue. Plant Cell. 11: 309-322.
  • Jackson D. 2000. Opening up the communication channels: recent insights into plasmodesmal function. Current Opinion in Plant Biology. 3: 394-399.
  • Jackton M.B. 2002. Long-distance signalling from roots to shoots assessed: the flooding story. J. Exp. Bot. 53: 175-181.
  • Jeschke W.D., Hartung W. 2000. Root-shoot interaction in mineral nutrition. Plant and Soil. 226: 57-69.
  • Jorgensen R. A., Atkinson R.G., Forster R.L.S., Lucas W.J. 1998. An RNA-based information superhighway in plants. Science. 279: 1486-1487.
  • Koch K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509-540.
  • Koziołek C., Grams T.E.E., Scheiber U., Matyssek R., Fromm J. 2003. Transient knockout of photosynthesis mediated by electrical signals. New Phytologist. 161: 715-722.
  • Lucas W.J., Balachandran S., Park J., Wolf S. 1996. Plasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport. insights gained from viral movement proteins. J. Exp. Bot. 47: Spec. Isue.1119-1128.
  • Lucas W.J., Byung-Chun Yoo., Kragler F. 2001. RNA as a long-distance information macromolecule in plants. Nature reviews, Molecular Cell Biol. 2: 849-857.
  • Malone M., Alarcon J.J., Palumbo L. 1994. An hydraulic interpretation of rapid, long-distance wound signalling in the tomato. Planta. 193: 181-185.
  • Malone M., Alarcon J.J. 1995. Only xylem-borne factors can account for dydtemic wound signalling in the tomato plant. Planta. 196: 740-746.
  • Mooney H.A., Winner W.E., Pell E.J., Chu E. eds. 1991. Response of plants to multiple stresses. Academic Press. Munch E. 1930. Die Stoffbewegungen in der Pflanze. Jena. Verlag von Gustav Fischer.
  • Oparka K.J. 2004. Getting the message across: how do plant cells exchange macromolecular complexes? Trends in Plant Science. 9: 33-4
  • Oparka K.J., Cruz S.S. 2000. The great escape: phloem transport and unloading of macromolecules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 323-347.
  • Osone Y., Tateno M. 2005. Applicability and limitations of optimal biomass allocation models: a test of two species from fertile and infertile habris. Ann. Bot. 95. 1211-1220.
  • Paszewski A., Zawadzki T. 1973. Action potential in Lupinus angustfolius L. shoot. J. Exp. Bot. 24: 804-809.
  • Pena-Cortes H., Fisahn J., Willmitzer L. 1995. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. USA. 92: 4106-4113.
  • Pena-Cortes H., Sanchez-Serano J., Rocha-Sosa M., Willmitzer L. 1988. Systemic induction of proteinase- -inhibitor-II gene expression in potato plants by wounding. Planta. 174: 84-89.
  • Rahayu Y.S., Walch-Liu P., Neumann G., Romheld V., von Wiren N., Bangerth F. 2005. Root-derived cytokinins as long-distance signals for NO3' -induced stimulation of leaf growth. J. Expt. Bot. 56: 1143-1152.
  • Rasmussen J.B., Hammerschmidt R., Zook M.N. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringe pv syringe, Plant Physiol. 97: 1324-1347.
  • Rhodes J.D., Thain J.F., Wildon D.C. 1996. The pathway for systemic electrical signal conducting in the wounded tomato plant. Planta. 200: 50-57.
  • Ruiz-Medrano R., Xoconostle-Cazares B., Lucas W.J. 2001. The phloem as a conduit for inter-organ communication. Current Opinion in Plant Biol. 4: 202-209.
  • Ryan C.A. 2000. Review. The systemin signaling pathway: differential activation of plant defensive genes. Biochemica and Biophysica Acta. 1477: 112-121.
  • Ryan C.A., Moura D.S. 2002. Systemic wound signaling in plants: a new perception. Pros. Nat. Acad. Sci. USA. 99: 6519-6520.
  • Sakuta C., Satoh S. 2000. Vascular tissue-specific gene expression of xylem sap glicine-rich proteins in root and their localization in the walls of vessels in cucumber. Plant Cell Physiol. 41: 627-638.
  • Sauter A., Davies W.J., Hartung W. 2001. The longdistance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J. Exp. Bot. 52: 1991-1997.
  • Schobert C., Baker L., Szederkenyi J., Grossmann P., Komor E., Hayashi H., Chino M., Lucas W.J. 1998. Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta. 206: 245-253.
  • Sharp R.E. 2002. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell and Environment. 25: 211-222.
  • Sharp R.E., LeNoble M.E. 2002. ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot. 53: 33-37.
  • Sharp R.E., Poroyko V., Hejlek L.G., Spollen W.G., Springer G.K., Bohnert H.J., Nguyen H.T. 2004. Root growth maintenance during water deficits: physiology to functional genomics. J. Exp. Bot. 55: 2343-2351.
  • Shulaev V., Leon J., Raskin I. 1955. Is salicylic acid translocated signal of systemic acquired resistance in tobacco? Plant Cell. 7: 1691-1701.
  • Smith J.A.C., Milburn J.A. 1980a. Water stress and phloem loading. Ber, Deutsch. Bot. Ges. 93: 269-280.
  • Smith J.A.C., Milburn J.A. 1980b. Phloem turgor and the regulation of sucrose loading. Planta. 148: 42-48.
  • Sowińki P. 1999. Transport of photoassimilates in plants under unfavourable environmental conditions. Acta Physiol. Plant. 21: 75-85.
  • Starck Z. 2003. Transport i dystrybucja substancji pokarmowych w roślinach. Wydawnictwo SGGW.
  • Starck Z., Chołuj D., Gawrońska H. 1998. The effect of drought hardening and chilling on ABA content in xylem sap and ABA-detivery rate from root to tomato plant. Acta Physiologiae Plantarum. 20: 41-48.
  • Stratmann J.W. 2003. Long distance run in the wound response - jasmonic acid is pulli ng ahead. Trends in Plant Science. 8: 247-250.
  • Stratmann J.W., Ryan C.A. 1997. Myelin basic protein kinase activity in tomato leaves is induced systematically by woundtng and increases in response to systemin and oligosaccharide elicitors. Proc. Natl. Acad. Sci. USA. 94: 11085-11089.
  • Sun Q., Yoda K., Suzuki M., Suzuki H. 2003. Vascular tissue in the stem and roots of woody plants can conduct light. J. Exp. Bot. 54: 1627-1635.
  • Taiz L., Zeiger E. 2002. Plant Physiology. Sinauer Associates Inc. Publishers, Sunderland, Massachusetts. Third eddition.
  • Thompson G.A., Schulz A. 1999. Macromolecular trafficking in the phloem. Trends in Plant Science. 4: 354-360.
  • Thompson M.V., Holbrook N.M. 2004. Scaling phloem transport: information transmission. Plant, Cell and Environment. 27: 509-519.
  • van Bel A.J.R., Ehlers K., Knoblauch M. 2002. Sieve elements caught in the act. Trends in Plant Sci. 7: 126-132.
  • Volkov A.G., Dunkley T.C., Morgan S.A., Ruff II D., Boyce Y.L., Labady A.J. 2004. Bioelectrochemical signaling in green plants induced by photosensory system. Biochemistry. 63: 91-94.
  • Walter A., Schurr U. 2005. Dynamics of leaf and root growth: endogenous control versus environmental impact. Annals of Botany. 95: 891-900.
  • Wan X., Landhausser S.M., Zwiazek J.J., Lieffers V.J. 2004. Stomatal conductance and xylem sap properties of aspen (Populus tremuloides) in low soil temperature. Physiologia Plantarum. 122: 79-85.
  • Wildon D.C., Doherty H.M., Eagles G., Bowles D.J., Thain J.F. 1989. Systemic responses arising from localized heat stimuli in tomato plants. Annals of Botany. 1989. 64: 691-695.
  • Wildon D.C., Thain J.F., Minchin P.E.H., Gubb I.R., Reilly A.J., Skipper Y.D., Doherty H.M., O'Donnell P.J., Bowles D.J. 1992. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature. 360: 62-65.
  • Woodrow L., Thompson R.G., Grodziński B. 1988. Effect of ethylene on photosynthesis and partitioning in tomato (Lycopersicon esculentum Mill.). J. Exp. Bot. 39: 667-684.
  • Wright J.P., Fisher D.B. 1981. Measurement of sieve tube membrane potential. Plant Physiol. 67: 845-848.
  • Zdunek E., Lips S.H. 2001. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J. Exp. Bot. 52: 1269-1276.
  • Zhang Z.P., Baldwin I.T. 1997. Transport of [2-14C]jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pool in Nicotiana sylvestris. Planta. 203: 436-441.
  • Zhu Y., Green L., Woo Y.M., Owens R., Ding B. 2001. Cellular basis of potato spindle tuber viroid systemic movement. Virology. 279: 69-77.
  • Zhu Y., Qi Y., Xun Y., Owens R., Ding B. 2002. Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol. 130: 138-146.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-dcc74ae2-05f0-407b-9ce3-d6974f4cf857
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.