PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 31 | 1 |

Tytuł artykułu

Effect of freezing and salting on the activity of lipoxygenase of the muscle tissue and roe of Baltic herring

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Freezing followed by frozen storage of Baltic herring at -25°C for a period of 6 months resulted in lowering the activity of lipoxygenase of the muscle tissue down to 78.2% and of the roe-down to 70.0%. The activity of the enzyme, extracted from the muscle tissue, stored in a buffer solution at -10, -18, and -25°C declined in reverse proportion to the increase of the storage temperature. Salting of herring, until they reached from 9.8 to 18.5% of salt content in their muscle tissue caused a decline in the activity of lipoxygenase, which was in direct proportion to the concentration of salt. Lipoxygenase of roe was catalysed more extensively during the weak salting (9.8% NaCl) than it was during medium- (12.3% NaCl) or strong salting (18.3% NaCl).
PL
W badaniach analizowano zmiany aktywności lipooksygenazy tkanki mięśniowej i ikry śledzi w czasie przechowywania w temperaturze -25°C w okresie 6 miesięcy. Określano także wpływ na jej aktywność solenia słabego, średniego i mocnego. Wyniki badań wykazały, że zamrażalnicze przechowywanie śledzi całych w temperaturze -25°C powodowało obniżenie aktywności tego enzymu w tkance mięśniowej do 78,2%, a w ikrze ryb do 70,0%. Aktywność enzymu wyekstrahowanego z tkanki mięśniowej śledzi i przechowywanego w roztworze buforowym w temperaturze -10, -18 i -25°C ulegała tym większemu obniżeniu im wyższa była temperatura przechowywania. Solenie śledzi do końcowej zawartości soli od 9,8 do 18,3% prowadziło do obniżenia aktywności lipooksygenazy tkanki mięśniowej proporcjonalnie do stężenia soli. Lipooksygenaza ikry była katalizowana podczas solenia, ale w większym stopniu słabego (9,8%) niż średniego (12,3%) oraz mocnego (l 8,3%). W układzie modelowym w środowisku buforu zawierającego NaCl, aktywność enzymu tkanki mięśniowej śledzi ulegała obniżeniu w miarę zwiększania stężenia soli od 1,0 do 26,4%. Efektywność inhibitująca NaCl była najniższa spośród wszystkich indywidualnie zastosowanych soli o stężeniu od 0,5 do 5,0%, ale był on bardziej efektywny niż jego mieszanina z chlorkiem wapnia, magnezu i potasu w stężeniu od 2,0 do 26,4%.

Wydawca

-

Rocznik

Tom

31

Numer

1

Opis fizyczny

p.97-111,fig.,ref.

Twórcy

autor
  • Agricultural University of Szczecin, Papieza Pawla VI 3, 71-459 Szczecin, Poland
autor

Bibliografia

  • Andersen A.A. T.C. Fletcher, G.M. Smith, 1981: Prostaglandin biosynthesis in the skin of plaice. Pleuronectesplatessa L. Comp. Biochem. Physiol., 70 C: 195—199.
  • Apgar M.E., H.O. Hultin, 1982: Lipid peroxidation in fish muscle microsomes in frozen state.Cryobiology, 19: 154-162.
  • Decker E.A., M.C. Erickson, H.O. Hultin, 1988: Enzymie lipid oxidative activity of sarcoplasmic reticulum in several species of Northwest Atlantic fish. Comp. Biochem. Biophys., 91 B:7-9.
  • Decker E.A, C.H. Huang, J.E. Osinchak, H.O.Hultin, 1989: Iron and copper: Role in enzymie lipids oxidation offish sarcoplasmic reticulum at in situ concentrations. J. Food Biochem., 13:179-186.
  • Decker E.A., H.O. Hultin, 1990: Factors influencing the catalysis of lipid oxidation by the soluble fraction of mackerel muscle. J. Food Sci., 55: 997.
  • Eun J.B., J.A. Boyle, J.O. Hearnsberger, 1994: Lipid peroxidation and chemical changes in catfish (Ictalurus punctatus) muscle microsomes during frozen storage. J. Food Sci., 59: 251-255.
  • Eun J.B., J.O. Hearnsberger, J.A. Boyle, 1992: Enzymie lipid peroxidation system in Chanel catfish (Ictalurus punctatus) muscle microsomes. J. Aquatic Food Product Technology, 1, 3/4:91-107.
  • Gardner H.W., 1980: Lipid enzymes: lipases, lipoxygenases and hydroperoxidases. In: Autoxidation in food and biological systems [Simic M.G.S., M. Kareł, (eds.)]. Plenum Press, New York: 447-504.
  • German J.B., G. Bruckner, J.E. Kinsella, 1986: Lipoxygenases in trout gill tissue affecting on arachidonic, eicosapentaenoic and docosahexaenoic acids. Biochim. Biophys. Acta, 875: 12-20.
  • German J.B., R.K. Creveling, 1990: Identification and characterization of a 15-lipoxygenase from fish gills. J. Agric. Food Chem., 38: 2144-2147.
  • German J.B, M.L. Hu, 1990: Oxidant stress inhibits the endogenous production of lipoxygenase metabolites in rat lungs and fish gills. Free Rad. Biol. Med., 8: 441-448.
  • German J.B., J.E. Kinsella, 1985: Lipid oxidation in fish tissue. Enzymatic initiation via lipoxygenase.J. Agric. Food Chem., 33: 680-683.
  • German J.B., J.E. Kinsella, 1986: Hydroperoxide metabolism in trout gill tissue: effect of glutatione on lipoxygenase products generated from arachidonic acid and docosahexaenoic acid.Biochim. Biophys. Acta, 879: 378-387.
  • Grun I.U., W.E. Barbeau, 1995: Lipoxygenase activity in menhaden gill tissue and its effect on odor of n-3 fatty acid ester concentrates. J. Food Biochem., 18: 199-212.
  • Harris P., J. Tall, 1994: Substrate specificity of mackerel flesh lipopolygenase. J. Food Sci., 59:504-506, 516.
  • Hsieh R.J., J.B. German., J.E. Kinsella, 1988: Lipoxygenase in fish tissue: Some properties of the 12-lipoxygenase from trout gill. J. Agric. Food Chem., 36: 680-685.
  • Hsieh R.I., J.E. Kinsella, 1989: Lipoxygenase generation of specific volatile flavor: Carbonyl compounds in fish tissue. J. Agric. Food Chem., 37: 279-286.
  • Hsu H.H., B.S. Pan, 1996: Effects of protector and hydroxyapatite partial purification on stability of lipoxygenase from gray mullet gill. J. Agric. Food Chem., 44: 741-745.
  • Huang C.H., M.H. Huang, A.H. Lee, 1998: Characteristics of lipid peroxidation in sarcoplasmic reticulum of tilapia. Food Sci.,25:104-108.
  • Hultin H.O., 1988: Potential lipid oxidation problems in fatty fish processing. In: Fatty fish utilization:Upgrading from feed to food. Proceedings of a National Technical Conference [Davis N., (ed.)]. UNC Sea Grant College Program, Raleigh, N.C.:185-223.
  • Hultin H.O., 1992: Biochemical deterioration offish muscle. In: Quality assurance in the fish industry [Huss H.H., M. Jakobsen, J. Liston, (eds.)]: 125-138.
  • Hultin H.O., 1994: Oxidation of lipids in seafoods. In: Seafoods: Chemistry, Processing Technology and Quality [Shahidi F., J.R. Botta (eds.)]. Blackie Academic and Professional, Glasgow:49-74.
  • Hultin H.O., E.A. Decker, S.D. Kelleher, J.E. Osinchak, 1990: Control of lipid oxidation process in minced fatty fish. In: Seafood Science and Technology, Canada 13-16 May 1990: 93-100.
  • Hultin H.O., R.E. McDonald, S.D. Kelleher, 1982: Lipid oxidation in fish muscle microsomes.In: Chemistry and biochemistry of marine food products [Martin R.E., G.J. Flick, C.E. Hebard, D.R. Ward (eds.)]. The AVI Publishing Co., Westport, CT: 1-11.
  • Josephson D.B., R.C. Lindsay, 1986: Enzymatic generation of volatile aroma from fresh fish. In: Biogeneration of aroma [Croteau T.H., (ed.)]. American Chemical Society, Washington DC:201-221.
  • Linko R.R., 1967: Fatty acids and other components of Baltic herring flesh lipids. Ann. Univ.Turku, Ser. A, 101:7-121.
  • McDonald R.E., H.O. Hultin, 1987: Some characteristics of the enzymie lipid peroxidation systems in the microsomal fraction of flounder muscle. J. Food Sci., 52: 15-21,27.
  • McDonald R.E., S.D. Kelleher, H.O. Hultin, 1979: Membrane lipid oxidation in a microsomal fraction of red hake muscle. J. Food Biochem., 3: 125-134.
  • Mohri S., S.Y. Cho, Y. Endo, K. Fujimoto, 1990: Lipoxygenase activity in sardine skin. Agric.Biol. Chem., 54: 1889-1891.
  • Mohri S., S.Y. Cho, Y. Endo, K. Fujimoto, 1992: Linoleate 13(S)-lipoxygenase in sardine skin.J. Agric. Food Chem., 40: 573-576.
  • Osinchak J.E., H.O. Hultin, O.T. Zaicek, S.D. Kelleher, C.H. Huang, 1992: Effect of NaCl on catalysis of lipid oxidation by the soluble fraction of fish muscle. Free Rad. Biol. Med., 12:35-41.
  • Rhee K.S., T.R. Dtson, G.C. Smith, 1984: Enzymie lipid peroxidation in microsomal fractions from beef skeletal muscle. J. Food Sci., 49: 675.
  • Schmedes A., G. Holmer, 1989: A new thiobarbituric acid (TBA) method for determining free malonodialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation.J. Am. Oil Chem. Soc. Sci., 66: 813-817.
  • Slabyj B.M., H.O. Hultin, 1982: Lipid peroxidation by microsomal fractions isolated from Ligot and dark muscles of herring (Clupea harengus). J. Food Sci., 47: 1395-1398.
  • Slabyj B.M., H.O. Hultin, 1984: Oxidation of a lipid emulsion by a peroxidizing microsomal fraction from herring muscle. J. Food Sci., 49: 1392-1393.
  • Stodolnik L., E. Samson, 2000: Lipoxygenase activity of selected tissues and organs of Balic herring. Acta Ichthyol. Piscat., 30, 2: 47-57.
  • Takiguchi A., 1989: Effect of NaCl on the oxidation and hydrolysis of lipids in salted sardine fillets during storage. Bull. Japan Soc. Sci. Fish., 55: 1649-1654.
  • Triqui R., G.A. Reineccius, 1995: Flavor development in the ripening of anchovy (Engraulis encrasicholus L.). J. Agric. Food Chem., 43: 453-458.
  • Wang Y.J., L.A, Miller , Ρ.Β. Addis, 1991: Effect of heat inactivation of lipoxygenase on lipid oxidation in lake herring. J. Am. Oil Chem. Soc., 68: 752-757.
  • Winkler M., G. Pilhofer, J.B. German, 1991: Stereochemical specificity of the n-9 lipoxygenase offish gill. J. Food Biochem., 15: 437-448.
  • Yamamoto S., 1992: Mammalian lipoxygenases: molecular structures and functions. Biochim.Biophys. Acta, 1128: 117-131.
  • Zhang C.H., T. Hirano, T. Suzuki, T. Shirai, 1992: Enzymatically generated specific volatile compounds in ayu tissues. Bull. Japan Soc. Sci. Fish., 58: 559-565.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-daac4c36-99a7-435b-8e1b-7bc6daf15212
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.