PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2006 | 51 | 2 |

Tytuł artykułu

Locomotor performance and cost of transport in the northern flying squirrel Glaucomys sabrinus

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We assess locomotor performance by northern flying squirrelsGlaucomys sabrinus Shaw, 1801 and test the hypothesis that gliding locomotion is energetically cheaper than quadrupedal locomotion. We measured 168 glides by 82 northern flying squirrels in Alaska. Mean glide distances varied from 12.46 m to 14.39 m, with a maximum observed glide distance of 65 m. Mean glide angles varied from 41.31° to 36.31°, and mean air speed ranged from 6.26 m/s to 8.11 m/s. There were no differences in the performance of male and female flying squirrels. We used models of transport cost to provide an initial assessment of the hypothesis that gliding locomotion is energetically less expensive than quadrupedal locomotion. For glides of average length, cost of gliding was less than cost of quadrupedal locomotion except when the animals climbed to the launch point very slowly or ran quickly. Thus the hypothesis that gliding is less expensive than quadrupedal locomotion is supported.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

51

Numer

2

Opis fizyczny

p.169-178,fig.,ref.

Twórcy

  • Southeast Missouri State University, Cape Girardeau, MO 63701, USA
autor
autor
autor

Bibliografia

  • Addington T. M., Scheibe J. S. and Hendershott A. J. 2000. Planar surface area and launch performance inGlaucomys volans. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 199–211.
  • Alexander R. McNeill. 1992. Exploring biomechanics: Animals in motion. Scientific American Library, New York: 1–247.
  • Alexander R. McNeill. 2003. Principles of animal locomotion. Princeton University Press, Princeton: 1–371.
  • Ando M. and Shiraishi S. 1993. Gliding flight in the Japanese giant flying squirrelPetaurista leucogenys. Journal of Mammalogical Society of Japan 18: 19–32.
  • Baudinette R. V. and Schmidt-Nielsen K. 1974. Energy cost of gliding flight in the herring gull. Nature, London 248: 83–84.
  • Caple G. 1983. The physics of leaping animals and the evolution of preflight. The American Naturalist 121: 455–476.
  • Charnov E. L. 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129–136.
  • Dial R. 2003. Energetic savings and the body size distributions of gliding mammals. Evolutionary Ecology Re-search 5: 1151–1162
  • Emmons L. H. and Gentry A. H. 1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. The American Naturalist 121: 513–524.
  • Essner R. L. Jr 2002. Three-dimensionsal kinematics in leaping, parachuting and gliding squirrels. Journal of Experimental Biology 205: 2469–2477.
  • Essner R. Jr and Scheibe J. S. 2000. A comparison of scapular shape in flying squirrels (Rodentia: Sciuridae) using relative warp analysis. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 213–228.
  • Feduccia A. 1996. The origin and evolution of birds. Yale University Press, New Haven, Connecticut: 1–420.
  • Flaherty E. A. 2002. Locomotor performance and cost of transport in the squirrel glider,Petaurus norfolcensis Petauridae). MNS thesis, Southeast Missouri State University, Cape Girardeau, Missouri: 1–34.
  • Goldingay R. 2000. Gliding mammals of the world: diversity and ecological requirements. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 9–44.
  • Gumbel E. J., Greenwood J. A. and Durand D. 1953. The circular normal distribution: Theory and tables. Journal of the American Statistical Association 75: 510–515.
  • Hanski I. K., Stevens P. C, Ihalempia P. and Selonen V. 2000. Home range size, movements, and nest-site use in the Siberian flying squirrel,Pteromys volans. Journal of Mammalogy 81: 798–809.
  • Hampson C. G. 1965. Locomotion and some associated morphology in the northern flying squirrel. PhD dissertation, University of Alberta, Edmonton, Alberta: 1–229.
  • Hendershott A. J. 1996. Locomotor performance and energetics in the flying gecko (Ptychozoon kuhli). MNS thesis, Southeast Missouri State University, Cape Girardeau, Missouri: 1–47.
  • Hill A. V. 1950. The dimensions of animals and their muscular dynamics. Science Progress 38: 209–230.
  • Holmes D. J. and Austad S. N. 1994. Fly now, die later: life-history correlates of gliding and flying in mammals. Journal of Mammalogy 75: 224–226.
  • Jackson S. M. 2000. Glide angle in the genusPetaurus and a review of gliding in mammals. Mammal Review 30: 9–30.
  • Keith M. M., Scheibe J. S. and Hendershott A. J. 2000. Launch dynamics inGlaucomys volans. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 185–198.
  • Nachtigall W. 1979. Gleitflug des flugbeutlersPetaurus breviceps papuanus. II Filmanalysen zur einstellung von gleitbahn und rümpf sowie Steuerung des gleitflug. Journal of Comparative Physiology A 133: 89–95.
  • Nachtigall W., Grosch R. and Schultz-Westrum T. 1974. Gleitflug des flugbeutlersPetaurus breviceps papuanus (Thomas): Flugverhalten und flugsteuerung. Journal of Comparative Physiology A 92: 105–115.
  • Norberg U. M. 1985. Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. The American Naturalist 126: 303–327.
  • Norberg U. M. 1990. Vertebrate flight: mechanics, physiology, morphology, ecology, and evolution. Zoophysiology, Vol. 27. Springer-Verlag, New York: 1–291.
  • Polyokova R. R. and Sokolov A. S. 1965. Structure of the locomotor organs in the volant squirrelPteromys volans L. in relation to its plane flight. Zoologicheskii Zhurnal 44: 902–905. [In Russian]
  • Robins J. H, Scheibe J. S. and Laves K. 2000. Sexual size dimorphism and allometry in southern flying suirrelsGlaucomys volans. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 229–248.
  • Scheibe J. S. and Robins J. H. 1998. Morphological and performance attributes of gliding mammals. [In: Ecology and evolutionary biology of tree squirrels. M. A. Steele, J. F. Merritt and D. A. Zegers, eds]. Special publication of the Virginia Museum of Natural History 6: 131-144.
  • Scheibe J. S. and Essner R. L. Jr 2000. Pelvic shape in gliding rodents: implications for the launch. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 167–184.
  • Scholey K. 1986a. The evolution of flight in bats. Biona-report 5: 1–12.
  • Scholey K 1986b. The climbing and gliding locomotion of the giant red flying squirrelPetaurista petaurista (Sciuridae). Biona-report 5: 187–204.
  • Smith J. D. 1977. Comments on flight and the evolution of bats. [In: Major patterns in vertebrate evolution. M. K. Hecht, P. C. Goody and M. M. Hecht, eds]. NATO Advanced Studies Institute, Series A, Volume 14. Plenum Press, New York: 427–437.
  • Sokal R. R. and Rohlf F. J. 1995. Biometry: the principles practice of statistics in biological research W. H. Freeman and Company, New York: 1–887.
  • Selonen V., Hanski I. K. and Stevens P. C. 2001. Space use of the Siberian flying squirrelPteromys volans in fragmented forest landscapes. Ecography 24: 588–600.
  • Stapp P. 1992. Energetic influences on the life history ofGlaucomys volans. Journal of Mammalogy 73: 914–920.
  • Stapp P. 1994. Can predation explain life-history strategies in mammalian gliders? Journal of Mammalogy 75: 227–228.
  • Stafford B. J., Thorington R. W. Jr and Kawamichi T. 2002. Gliding behavior of Japanese giant flying squirrels (Petaurista leucogenys). Journal of Mammalogy 83: 553–562.
  • Taylor C. R. 1977. The energetics of terrestrial locomotion and body size in vertebrates. [In: Scale effects in animal locomotion. T. J. Pedley, ed]. Academic Press, New York: 127–141.
  • Tomahawk Live Trap Co. 2006. (www.livetrap.com). Accessed 2006 March 16.
  • Tukey J. W. 1977. Exploratory data analysis. Addison-Wesley, Reading, Massachusetts: 1–688.
  • Vernes K. 2001. Gliding performance of the northern flying squirrel (Glaucomys sabrinus) in mature mixed forest of eastern Canada. Journal of Mammalogy 82: 1026–1033.
  • Wright B. 2000. Locomotor performance and cost of transport in the sugar glider. MNS Thesis, Southeast Missouri State University, Cape Girardeau, Missouri: 1–30.
  • Zahler P. 2000. The woolly flying squirrel and gliding: does size matter? Acta Theriologica 46: 429–436.
  • Zar J. H. 1999. Biostatistical analysis. Prentice Hall Inc. Upper Saddle River, New Jersey.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d649b92e-ea1b-4b5c-8050-8b5ab8808c2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.