PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 1 |

Tytuł artykułu

Resolving the ionotropic receptor kinetics and modulation in the time scale of synaptic transmission

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Synaptic transmission plays a crucial role in signal transduction in the adult central nervous system. It is known that synaptic transmission can be modulated by physiological and pathological processes and a number of factors including metal ions, pH, drugs, etc. The patch-clamp technique allows to measure postsynaptic currents, but the mechanism of these currents modulation remains unclear. The estimated value of neurotransmitter transient indicates that this time course is very short and the activation of postsynaptic receptors is extremely non-equilibrient. The ultrafast perfusion system makes it possible to mimic synaptic conditions and, additionally, the agonist concentration can be controlled, which is very important for pharmacokinetic studies. In the present paper, examples of pharmacological modulation of mIPSC kinetics and currents evoked by ultrafast agonist application are presented.

Wydawca

-

Rocznik

Tom

08

Numer

1

Opis fizyczny

p.231-241,fig.

Twórcy

autor
  • Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
autor

Bibliografia

  • 1.Bouron, A. Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Progress Neurobiol. 63 (2001) 613-635.
  • 2.Harris, K.M. and Stevens, J.K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9 (1989) 2982-2997.
  • 3.Clements, J.D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19 (1996) 163-171.
  • 4.Barbour, B. and Häusser, M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci. 20 (1997) 377-384.
  • 5.Bruns, D. and Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377 (1995) 62-65.
  • 6.Jonas, P. Application of agonists to isolated membrane patches. In: Single channel recordings (Sakmann, B. and Neher, E., Eds.), Plenum Press. New York and London, 1995, 231-242.
  • 7.Barberis, A., Cherubini, E. and Mozrzymas, J. W. Zinc inhibits miniature GABAergic current by allosteric modulation of GABAa receptor gating. J. Neurosci. 20 (2000) 8618-8627.
  • 8.Mozrzymas, J.W., Barberis, A., Michalak, K. and Cherubini, E. Chlorpromazine inhibits miniature GABAergic currents by reducing the binding and by increasing the unbinding rate of GABAa receptors. J. Neurosci. 19 (1999) 2474-2488.
  • 9.DeFazio, T. and Hablitz, J.J. Zinc and zolpidem modulate mIPSCs in rat neocortical pyramidal neurons. J. Neurophysiol. 80 (1998) 1670-1677.
  • 10.Jones, M.V. and Westbrook, G.L. Desensitized state prolong GABAa channel responses to brief agonist pulses. Neuron 15 (1995) 181-191.
  • 11.Cherubini, E. and Conti, F. Generating diversity at GABAergic synapses. Trands Neurosci. 24 (2001) 155-162.
  • 12.Wisden, W. and Seeburg, P.H. GABAa receptor channels: from subunits to functional entities. Curr. Oppin. Neurobiol. 2 (1992) 263-269.
  • 13.Sieghart, W. Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47 (1995) 182-234.
  • 14.Verdoon, T.A., Draguhn, A., Ymer, S., Seeburg, P.H. and Sakmann, B. Functioal properties of recombinant rat GABAa receptors depend upon subunit composition. Neuron 4 (1990) 919-928.
  • 15.Graham, D., Faure, C., Besnard, F. and Langer, S.Z. Pharmacological profile of benzodiazepine site ligands with recombinant GABAa receptor subtypes. Europ. Neuropharmacol. 6 (1996) 119-125.
  • 16.Alsbo, C.W., Kristiansen, U., Moller, F., Hansen, S.L. and Johansen, F.F. GABAa receptor subunit interaction important for benzodiazepine and zinc modulation: a patch-clamp and single cell RT-PCR study. Eur. J. Neurosci. 13 (2001) 1673-1682.
  • 17.Barberis, A., Petrini, E.M., Cherubini, E. and Mozrzymas, J.W. Allosteric interaction of zinc with recombinant α1β2γ2 and αlβ2 GABAa receptors. Neuropharmacology 43 (2002) 607-618.
  • 18.Snyder, S.H., Banerjee, S.P., Yamamura, S.P. and Greenberg, D. Drugs, neurotransmitter and schizophrenia. Science 184 (1974) 1243-1253.
  • 19.Seeman, P. Brain dopamine receptors. Pharmacol. Rev. 32 (1980) 229-313.
  • 20.Peroutka, S.J. and Snyder, S.H. Relationship of neuroleptic drug effects at brain dopamine, serotonin, α-adrenergic, and histamine receptors to clinical potency. Am. J. Psychiatry 137 (1980) 1518-1522.
  • 21.Gould, R.J., Murphy, M.M., Reynolds, I.J. and Snyder, S.H. Antipsychotic drugs of the diphenylbutylpiperadine type act as calcium channel antagonists. Proc. Natl. Acad. Sci. USA 80 (1983) 5122-5125.
  • 22.Sand, O., Sletholt, K., Gautuik, K. and Haug, E. Trifluoperazine blocks calcium dependent action potentials and inhibit hormone release from rat pituitary tumour cells. Eur. J. Pharmacol. 86 (1983) 177-184.
  • 23.Changeux, J.P., Pinset, C. and Ribera, A.B. Effect of chlorpromazine and phencyclidine on mouse C2 acetylcholine kinetics. J. Physiol. (Lond.) 378 (1986) 497-513.
  • 24.Dinan, T.G., Crunelli, V. and Kelly, J.S. Neuroleptics decrease calcium- activated potassium conductance in hippocampal pyramidal cells. Brain Res. 407 (1987) 159-162.
  • 25.Zorumski, C.F. and Yang, J. Non-competitive inhibition of GABA currents by phenothiazines in cultured chick spinal cord and rat hippocampal neurons. Neurosci. Lett. 92 (1988) 86-91.
  • 26.Ogata, N., Nishimura, M.. and Narahashi, T. Kinetics of chlorpromazine block of sodium channels in single guinea-pig cardiac myocytes. J. Pharmacol. Exp. Ther. 243 (1989) 605-613.
  • 27.Bolotina, V., Courtney, K.R. and Khodorov, B. Gate-dependent blockade of sodium channels: structure-activity relationships. Mol. Pharmacol. 42 (1992) 423-431.
  • 28.Lidsky, T.I., Yablonsky Alter, E., Zuck, L.G. and Banerjee, S.P. Antipsychotic drug effects on glutamatergic activity. Brain Res. 764 (1997) 46-52.
  • 29.Agopyan, N. and Krnjevic, K. Effects of trifluoperazine on synaptically evoked potentials and membrane properties of CA1 pyramidal neurons of rat hippocampus in situ and in vitro. Synapse 13 (1993) 10-19.
  • 30.Kaila, K. Ionic bases of GABAa receptor channel function in the nervous system. Prog. Neurobiol. 42 (1994) 489-537.
  • 31.Chesler, M. The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34 (1990) 401-427.
  • 32.Ballanyi, K. and Grafe, P. A intracellular analysis of γ-aminobutyric-associated ion movements in rat sympathetic neurons. J. Physiol. 365 (1985) 41-58.
  • 33.Kaila, K. and Voipio, J. GABA-activated bicarbinate conductance, in: chloride channels, in nerve, muscle and glial cells (Alvarez-Leefmans, F.J. and Russel, J.M., Eds.), Plenum Publishing Corporation, 1990, 331-352.
  • 34.Pasternack, M., Smirnov, S. and Kaila, K. Proton modulation of functionally distinct GABAa receptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 35 (1996) 1279-1288.
  • 35.Krishek, BJ. and Smart, T.G. Proton sensitivity of rat cerebellar granule cell GABAa receptors: dependence on neuronal development. J. Physiol. (Lond.) 530 (2001) 219-233.
  • 36.Żarnowska, E.D., Mercik, K., Mandat, M. and Mozrzymas, J.W. Wpływ zmian zewnątrzkomórkowego pH na receptory GABA w neuronach. Post. Hig. Med. Dośw. 56 (2002) 293-305.
  • 37.Żarnowska, E.D., Mercik, K., Mandat, M. and Mozrzymas, J.W. Changes in extracellular pH modulates the IPSCs by allosteric modulation of GABAa receptor gating. 32nd Annual Meeting, Orlando, 2002, 53.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d4a8c89c-1dce-4271-9de6-b996f5383bbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.