PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2008 | 53 | 1 |

Tytuł artykułu

Heterogeneity of heterochromatin in six species of Ctenomys [Rodentia: Octodontoidea: Ctenomyidae] from Argentina revealed by a combined analysis of C- and RE-banding

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Exceptional chromosomal variability makesCtenomys an excellent model for evolutionary cytogenetic analysis. Six species belonging to three evolutionary lineages were studied by means of restriction endonuclease and C-chromosome banding. The resulting banding patterns were used for comparative analysis of heterochromatin distribution on chromosomes. This combined analysis allowed intra- and inter-specific heterochromatin variability to be detected, groups of species belonging to different lineages to be characterized, and phylogenetic relationships hypothesized from other data to be supported. The “ancestral group”,Ctenomys pundti andC. talarum, share three types of heterochromatin, the most abundant of which was also found in C. aff.C. opimus, suggesting that the latter species also belongs to the “ancestral group”. Additionally, within the subspeciesC. t. talarum, putative chromosomal rearrangements distinguishing two of the three chromosomal races were identified. Two species belong to an “eastern lineage”,C. osvaldoreigi andC. rosendopascuali, and share only one type of heterochromatin homogeneously distributed across their karyotypes.C. latro, the only analyzed species from the “chacoan” lineage, showed three types of heterochromatin, one of them being that which characterizes the “eastern lineage”.C. aff.C. opimus, because of its low heterochromatin content, is the most primitive karyotype of the genus yet described. The heterochromatin variability showed by these species, reflecting the evolutionary divergence toward different heterochromatin types, may have diverged since the origin of the genus. Heterochromatin amplification is proposed as a trend withinCtenomys, occurring independently of chromosomal change in diploid numbers.

Wydawca

-

Czasopismo

Rocznik

Tom

53

Numer

1

Opis fizyczny

p.57-71,fig.,ref.

Twórcy

autor
  • Universidade Federal do Parana, PO Box 19.071, 81531-990, Curitiba, PR, Brazil
autor
autor

Bibliografia

  • Argüelles C. F., Suárez P., Giménez M. D. and Bidau C. J. 2001. Intraspecific chromosome variation between different populations ofCtenomys dorbignyi (Rodentia, Ctenomyidae) from Argentina. Acta Theriologica 46: 363–373.
  • Barros M. A. and Patton J. L. 1985. Genome evolution in pocket gophers (genusThomomys). III. Fluorochrome-revealed heterochromatin heterogeneity. Chromosoma 92: 337–343.
  • Baverstock P. R., Gelder M. and Jahnke A. 1982. Cytogenetic studies of the Australian rodentUromys caudimaculatus, a species showing extensive heterochromatin variation. Chromosoma 84: 517–533.
  • Baverstock P. R., Watts C. H. S. and Hogarth J. T. 1977. Chromosome Evolution in Australian Rodents. I. The Pseudomyinae, the Hydromyinae and theUromys/Melomys Group. Chromosoma 61: 95–125.
  • Bianchi M. S., Bianchi N. O., Pantelias G. E. and Wolff S. 1985. The mechanism and pattern of banding induced by restriction endonucleases in human chromosomes. Chromosoma 91: 131–136.
  • Bidau C. J. 2006. Familia Ctenomyidae. [In: Mamíferos de Argentina. Sistemática y Distribución. R. J. Bárquez, M. M. Díaz and R. A. Ojeda, eds]. SAREM, Tucumán: 212–231.
  • Bidau C. J. (in press). GenusCtenomys Blainville, 1826. [In: Mammals of South America. Vol. III. Rodentia. J. L. Patton, ed]. The University of Chicago Press, Chicago.
  • Bidau C. J., Giménez M. D., Contreras J. R., Argüelles C. F., Braggio E., Dérrico R., Ipucha M. C., Lanzone C., Montes M. and Suárez P. 2000. Variabilidad cromosómica y molecular inter- e intraespecífica enCtenomys (Rodentia, Ctenomyidae, Octodontoidea), Múltiples patrones evolutivos? IX Congreso Iberoamericano de Biodiversidad y Zoología de Vertebrados, Buenos Aires, Argentina: 127-130.
  • Coghlan A., Eichler E. E., Oliver S. G., Patterson A. H. and Stein L. 2005. Chromosomal evolution in eukaryotes: a multi-kingdom perspective. Trends in Genetics 12: 673–682.
  • Contreras J. R. and Bidau C. J. 1999. Líneas generales del panorama evolutivo de los roedores excavadores sudamericanos del géneroCtenomys (Mammalia, Rodentia, Caviomorpha, Ctenomyidae). Ciencia Siglo XXI: 1–22.
  • Cook J. A. and Salazar-Bravo J. 2004. Heterochromatin variation among the chromosomally diverse tuco-tucos (Rodentia: Ctenomyidae) from Bolivia. [In: Chapter 12. Contribuciones Zoológicas en Homenaje a Bernardo Villa. V. Sánchez-Cordero and R. A. Medellín, eds]. Instituto de Biología e Instituto de Ecología, UNAM, México: 129–142.
  • D’Elía G., Lessa E. P. and Cook J. A. 1999. Molecular phylogeny of tuco-tucos, genusCtenomys (Rodentia, Octodontidae), evaluation of the mendocinus species group and the evolution of asymmetric sperm. Journal of Mammalian Evolution 1: 19–38.
  • Freitas T. R. O. 2007.Ctenomys lami: the highest chromosome variability inCtenomys (Rodentia, Ctenomyidae) due to a centric fusion/fission and pericentric inversion system. Acta Theriologica 52: 171–180.
  • Gallardo M. H. 1979. Las especies chilenas deCtenomys (Rodentia, Octodontidae). I. Estabilidad cariotípica. Archivos de Biología y Medicina Experimental 12: 71–82.
  • Gallardo M. H. 1991. Karyotypic evolution inCtenomys (Rodentia, Ctenomyidae). Journal of Mammalogy 72: 11–21.
  • Garagna S., Marziliano N., Zuccotti M, Searle J. B., Capanna E. and Redi C. A. 2001. Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proceedings of the National Academy of Sciences of the United States of America 98: 171–175.
  • Garagna S., Pérez-Zapata A., Zuccotti M., Mascheretti S., Marziliano N., Redi C. A., Aguilera M. and Capanna E. 1997. Genome composition in Venezuelan spiny-rats of the genusProechimys (Rodentia, Echimyidae). I. Genome size, C-heterochromatin and repetitive DNAs in situ hybridization patterns. Cytogenetics and Cell Genetics 78: 36–43.
  • García L., Ponsá M., Egozcue J. and García M. 2000. Comparative chromosomal analysis and phylogeny in fourCtenomys species (Rodentia, Octodontidae). Biological Journal of the Linnean Society 69: 103–120.
  • Gardner A. L. and Patton J. L. 1976. Karyotypic variation in oryzomyine rodents (Cricetinae) with comments on chromosomal evolution in the neotropical cricetine complex. Occasional Papers of the Museum of Zoology, Louisiana State University 49: 1–48.
  • Giménez M. D. and Bidau C. J. 1994. A first report of HSRs in chromosome 1 ofMus musculus domesticus from South America. Hereditas 121: 291–294.
  • Giménez M. D., Bidau C. J., Argüelles C. F. and Contreras J. R. 1999. Chromosomal characterization and relationship between two new species ofCtenomys (Rodentia, Ctenomyidae) from northern Córdoba province, Argentina. Zeitschrift für Saugetierkunde 64: 91–106.
  • Giménez M. D., Mirol P. M., Bidau C. J. and Searle J. B. 2002. Molecular analysis of populations ofCtenomys (Caviomorpha, Rodentia) with high karyotypic variability. Cytogenetic and Genome Research 96: 130–136.
  • Ipucha M. C. 2002. Caracterización de linajes del géneroCtenomys (Rodentia, Ctenomyidae) en base a patrones de bandeo cromosómico con endonucleasas de restricción. MSc thesis, Universidad Nacional de Misiones, Posadas, Argentina: 1–120.
  • John B. 1988. The biology of heterochromatin. [In: Heterochromatin, molecular and biological aspects. R. S. Verma, ed]. Cambridge University Press, Cambridge: 1–147.
  • Kaelbing M., Miller D. A. and Miller O. J. 1984. Restriction enzyme banding of mouse metaphase chromosomes. Chromosoma 90: 128–132.
  • King M. 1993. Species evolution. The role of chromosome change. Cambridge University Press, Cambridge: 1–336.
  • Lee M. R. and Elder F. F. 1988. Yeast stimulation of bone marrow mitoses for cytogenetic investigation. Cytogenetics and Cell Genetics 26: 36–40.
  • Leităo A., Chaves R., Santos S., Guedes-Pinto H. and Boudry P. 2004. Restriction enzyme digestion chromosome banding inCrassostrea andOstrea species, comparative karyological analysis within Ostreidae. Genome 47: 781–788.
  • Mascheretti S., Mirol P. M., Giménez M. D., Bidau C. J., Contreras J. R. and Searle J. B. 2000. Phylogenetics of the speciose and chromosomally variable rodent genusCtenomys (Ctenomyidae, Octodontoidea), based on mitochondrial cytochromeb sequence. Biological Journal of the Linnean Society 70: 361–376.
  • Massarini A. I., Barros M. A., Ortells M. O. and Reig O. A. 1991. Chromosomal polymorphism and small karyotypic differentiation in a group ofCtenomys species from Central Argentina (Rodentia, Octodontidae). Genetica 83: 131–144.
  • Massarini A. I., Barros M. A., Ortells M. O. and Reig O. A. 1995a. Variabilidad cromosómica enCtenomys talarum (Rodentia, Octodontidae) de Argentina. Revista Chilena de Historia Natural 68: 207–214.
  • Massarini A. I., Rossi M. S. and Barros M. A. 1995b. Evolución de las especies del géneroCtenomys (Rodentia, Octodontidae) de la region pampeana y de Cuyo, aspectos cromosómicos y moleculares. Marmosiana 1: 23–33.
  • Mezzanotte R., Bianchi U., Vanni R. and Ferrici L. 1983. Chromatin organization and restriction nuclease activity on human metaphase chromosomes. Cytogenetics and Cell Genetics 36: 562–566.
  • Miller D. A., Choi Y. A. and Miller O. J. 1983. Chromosome localization of highly repetitive human DNA’s and amplified ribosomal DNA with restriction enzymes. Science 219: 395–397.
  • Nevo E. 1999. Mosaic evolution of subterranean mammals. Regression, progresson and global convergence. Oxford University Press, Oxford: 1–413.
  • Novello A. and Villar S. 2006. Chromosome plasticity inCtenomys (Rodentia Octodontidae): chromosome 1 evolution and heterochromatin variation. Genetica 127: 303–309.
  • Patton J. L. and Sherwood S. 1983. Chromosome evolution and speciation in rodents. Annual Review of Ecology and Systematics 14: 139–158.
  • Pesce C. G., Rossi M. S., Muro A. F., Reig O. A., Zorzópulos J. and Kornblihtt A. R. 1994. Binding of nuclear factors to a satellite DNA of retroviral origin with a marked differences in copy number among species of the rodentCtenomys. Nucleic Acids Research 4: 656–661.
  • Qumsiyeh M. B., Sánchez-Hernández C., Davis C. K., Patton J. L. and Baker R. J. 1988. Chromosomal evolution inGeomys as revealed by G- and C-band analysis. Southwestern Naturalist 33: 1–13.
  • Redi C. A., Garagna S. and Zuccotti M. 1990. Robertsonian chromosome formation and fixation: the genomic scenario. Biological Journal of the Linnean Society 41: 235–255.
  • Reig O. A. and Kiblisky P. 1969. Chromosome multiformity in the genusCtenomys (Rodentia, Octodontidae). A progress report. Chromosoma 28: 211–244.
  • Reig O. A., Busch C., Ortells M. O. and Contreras J. R. 1990. An overview of evolution, systematics, population biology and speciation inCtenomys. [In: Biology of subterranean mammals at the organismal and molecular levels. E. Nevo and O. A. Reig, eds]. Allan R. Liss, New York: 71–96.
  • Reig O. A., Massarini A. I., Ortells M. O., Barros M. A., Tiranti S. I. and Dyzenchauz F. J. 1992. New karyotypes and C-banding patterns of the subterranean rodents of the genusCtenomys (Caviomorpha, Octodontoidae) from Argentina. Mammalia 56: 603–623.
  • Rossi M. S., Pesce C. G., Kornblihtt A. R. and Zorzópulos J. 1995. Origin and evolution of a major satellite DNA from South American rodents of the genusCtenomys. Revista Chilena de Historia Natural 68: 171–183.
  • Slamovits C. H., Cook J. A., Lessa E. P. and Rossi M. S. 2001. Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (GenusCtenomys, Rodentia, Octodontidae), A phylogenetic approach. Molecular Biology and Evolution 18: 1708–1719.
  • Slamovits C. H. and Rossi M. S. 2002. Satellite DNA: agent of chromosomal evolution in mammals. A review. Mastozoología Neotropical 9: 297–308.
  • Sumner A. T. 1972. A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75: 304–306.
  • Ugarkovic D., Ploh M., Petitpierre E., Lucijanic-Justic V. and Juan C. 1994.Tenebrio obscurus satellite DNA is resistant to cleavage by restriction endonucleasesin situ. Chromosome Research 2: 217–223.
  • Wallrath L. 1998. Unravelling the misteries of heterochromatin. Current Opinion in Genetics and Development 8: 147–153.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ce9548c3-2b2b-46c2-9508-40ca867a4fea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.