PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

Structural and energetic aspects of protein-protein recognition

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Specific recognition between proteins plays a crucial role in a great number of vital processes. In this review different types of protein-protein complexes are analyzed on the basis of their three-dimensional structures which became available in recent years. The complexes which are analyzed include: those resulting from different types of recognition between proteinase and protein inhibitor (canonical inhibitors of serine proteinases, hirudin, inhibitors of cysteine proteinases, carboxypeptidase inhibitor), barnase-barstar, human growth hormone-receptor and antibody-antigen. It seems obvious that specific and strong protein-protein recognition is achieved in many different ways. To further explore this question, the structural information was analyzed together with kinetic and thermodynamic data available for the respective complexes. It appears that the energy and rates of specific recognition of proteins are influenced by many different factors, including: area of interacting surfaces; complementarity of shapes, charges and hydrogen bonds; water structure at the interface; conformational changes; additivity and cooperativity of individ­ual interactions, steric effects and various (conformational, hydration) entropy changes.

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.367-387,fig.

Twórcy

autor
  • University of Wroclaw, Tamka 2, PL-50-137 Wroclaw, Poland, E-mail: otlewski@bf.uni.wroc.pl
autor

Bibliografia

  • 1. Janin, J. & Chothia, C. (1990) The structure of protein-protein recognition sites. J. Biol. Chem. 265, 16027-16030.
  • 2. Hubbard, S.J. & Argos, P. Î1994) Cavities and packing at protein interfaces. Protein Sri. 3, 2194-2206.
  • 3. Jones, S. & Thornton, J.M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad. Sci. U.S.A. 93. 13-20.
  • 4. Nussinov, R. (1996) Protein-protein inter­faces: Architectures and interaction in pro­tein-protein interfaces and in protein cores. Their similarities and differences. Crit. Rev. Biochem. Mol. Biol. 31, 127-152.
  • 5. Chothia. C. & Janin. J. (1975) Principles of protein-protein recognition. Nature 256, 705-708.
  • 6. Schoichet, B. & Kuntz, ID. (1991) Protein docking and complementarity. J. Mol. Biol. 221, 327-346.
  • 7. Bacon, D.J. & Moult, J. (1992) Docking by least-squares fitting of molecular surfaces patterns. J. Mol. Biol. 225, 849-858.
  • 8. Kuhn, L.A., Siani, M.A., Pique, M.E., Kishcr, C.L., Getzoff. E.D. & Tainer, J.A. (1992) The interdependence of protein surface topogra­phy and bound water molecules revealed by surface accessibility and fractal density meas­ures. J. Mol. Biol. 228, 13-22.
  • 9. Norel, R., Fisher, D.. Wolfson, H.J. & Nussi­nov, R. (1994) Molecular surface recognition by computer vision-based technique. Protein Eng. 7, 39-46.
  • 10. Peters, K.P., Fauck, J. & Frommel, C. (1996) The automatic search for ligand binding sites in proteins of known three-dimensional struc­ture using only geometric criteria. J. Mol. Biol. 256, 201-213.
  • 11. Horton, N. & Lewis, M. (1992) Calculation of the free energy of association for complexes. Protein Sci. 1, 169-181.
  • 12. Mizutani, M.Y., Tomiaka, N. & Itai. A. (1994) Rational automatic search method for stable docking models of protein and ligand. J. Mol. Biol. 243. 310-326.
  • 13. Nicholls, A., Sharp, K.A. & Honig, B. (1991) Protein folding and association: Insight from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281-296.
  • 14. Laskowski, M., Jr. & Kato, I. (1980) Protein inhibitors of proteinases. Annu. Rev. Bio- chem. 49, 593-626.
  • 15. Read. R. & «James, M.N.G. (1986) introduction to the proteinase inhibitors: X-ray crystal­lography; in Proteinase Inhibitors (Barrett, A.J. & Salvesen, G., eds.) pp. 301-336, El­sevier, Amsterdam.
  • 16. Bode, W. & Huber, R. (1992) Natural protein proteinases inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433-451.
  • 17. Bode, W. & Huber, R. (1994) Proteinase-pro- tein inhibitor interactions. Fibrinolysis 8 (Suppl. 1). 161-171.
  • 18. Laskowski, M., Jr. (1986) Protein inhibitors of serine proteinases — mechanism and clas­sification; in Nutritional and Toxicological Significance of Enzyme Inhibitors (Friedman, M., ed.) pp. 1-17, Plenum, New York.
  • 19. Bode, W., Greyling, H.J., Huber, R., Otlewski, J. & Wilusz, T. (1989) The refined 2.0 A X-ray structure of the complex formed between bo­vine (3-trypsin and CMT11, a trypsin inhibitor from squash seeds (Cucurbita maxima). FEBS Lett. 242. 285-292.
  • 20. Schcchter, I. & Berger, A. (1967) On the size of the active site in proteases. Biochem. Bio- phys. Res. Commun. 27, 157-162.
  • 21. Finkenstadt, W.R., Ilamid, M.A., Mattis, J.A., Schrode, J.A., Sealock, R.W. & Laskowski, M., Jr. (1974) Kinetics and thermodynamics of the interaction of proteinases with protein inhibitors. Bayer-Symposium V (Fritz, H., Tschesche, H., Greene, L.J. & Truscheit, E., eds.) pp. 389-411, Springer-Verlag, Berlin.
  • 22. Otlewski. J. & Zbyryt, T. (1994 ) Single peptide bond hydrolysis/rcsynthesis in squash inhibi­tors of serine proteinases. I. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine ß-trypsin. Bio­chemistry 33, 200-207.
  • 23. Fersht, A.R. (1985) Emyme Structure and Mechanism. Freeman, San Francisco.
  • 24. Lazdunski, M., Vincent, J.-P., Schweitz, IL, Peron-Renner, M. & Pudles, J. (1974) The mechanism of association of trypsin (or chy- motrypsin) with the pancreatic trypsin inhibi­tors (Kunitz and Kazal). Kinetics and thermo­dynamics of the interaction. Bayer-Sympo­sium V (Fritz, H., Tschesche, H., Greene, L.J. & Truscheit, E., eds.) pp. 420^131, Springer- Verlag, Berlin.
  • 25. Huang, K., Anderson, S., Laskowski, M., Jr. & James, M.N.G. ( 1995) Water molecules par­ticipate in proteinase-inhibitor interactions: Crystal structures of Leu18, Ala18 and Gly18 variants of turkey ovomucoid inhibitor third domain complexed with Streptomyc.es griseus proteinase B. Protein Sci. 4. 1985-1997.
  • 26. Holak, T.A., Bode, W., Huber, R.. Otlewski, J. & Wilusz, T. (1989) Nuclear magnetic reso­nance and X-ray structures of squash trypsin inhibitor exhibit the same conformation of the proteinase binding loop. J. Mol. Biol. 210. 649-654.
  • 27. Bode, W., Epp, O., Huber, R., Laskowski, M., Jr. & Ardclt, W. (1985) The crystal and mo­lecular structure of the third domain of silver pheasant ovomucoid (OMSVP3). Eur. J. Bio­chem. 147, 387-395.
  • 28. McPhalen, C.A. & James, M.N.G. ( 1987) Crys­tal and molecular structure of the serine pro­teinase inhibitor CI-2 from barley seeds. Bio­chemistry 26, 261-269.
  • 29. Bigler, T.L., Lu, W., Park, S.J., Tashiro, M., Wieczorek, M., Wynn, R. & Laskowski, M., Jr. (1993) Binding of amino acid side chains to preformed cavities: Interaction of serine pro­teinases with turkey ovomucoid third do­mains with coded and noncoded Pi residues. Protein Sci. 2, 786-799.
  • 30. Krystek, S., Stouch, T. & Novotny, J. (1993) Affinity and specificity of serine endopepti-dase-protein inhibitor interactions. J. Mol. Biol. 234, 661-679.
  • 31. Lu, W.. Apostol, I., Qasim, M.A., Warne, N., Wynn, R., Zhang, W.L., Anderson, S., Chiang, Y.W., Rothberg, 1., Ryan, K. & Laskowski, M., Jr. (1997) Binding of amino acid side chains to Si cavities of serine proteinases. J. Mol. Biol, (in press).
  • 32. Qasim, M.A., Ranjbar, M.R., Wynn. R.. An­derson. S. & I^askowski, M., Jr. (1995) Ioniz- able Pi residues in serine proteinase inhibi­tors undergo large pK shifts on complex for­mation. J. Biol. Chem. 270, 1-4.
  • 33. Bateman, K.S., Huang, K., Lu, W., Anderson, S. & James. M.N.G. (1996) X-ray crystal structures of SGPB in complex with three aromatic Pi variants of OMTKY3. Poster pre­sented at Keystone Symposia on Proteolytic Enzymes and Inhibitors in Biology and Medi­cine.
  • 34. van de Locht, A., Lamba, D., Bauer, M.f Huber, R., Friedrich, T., Kroger, B., Hoffken, W. & Bode, W. (1995) Two heads are better than one: Crystal structure of the insect de­rived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J. 14, 5149-5157.
  • 35. McGrath, M.E., Gillmor, S.A. & Fletterick, R.J. (1995) Ecotin: Lesson on survival in a protease-fillcd world. Protein Sci. 4,141-148.
  • 36. Seong, I.S., Lee, H.R., Seol, J.H., Park. S.K., Lee, C.S.. Suh, S.W., Hong. Y.-M., Kang, M. S., Ha, D.B. & Chung, C.H. (1994) The Pi reactive site methionine residue of ecotin is not crucial for its specificity on target prote­ases. J. Biol. Chem. 269, 21915-21918.
  • 37. Castro. M.J.M. & Anderson, S. (1996) Alanine point-mutations in the reactive region of bo­vine pancreatic trypsin inhibitor: Effects on the kinetics and thermodynamics of binding to Ji-trypsin and a-chymotrypsin. Biochemis­try H5, 11435-11446.
  • 38. Wynn, R. & Laskowski, M„ Jr. (1990) Inhibi­tion of human (3-factor XIIa by squash family serine proteinase inhibitors. Biochem. Bio- phys. Res. Commun. 166. 1406-1410.
  • 39. Laskowski, M., Jr., Park, S.J., Tashiro, M. & Wynn, R. (1989) Design of highly specific inhibitors of serine proteinases. UCI^A Sym­posia on Molecular and Cellular Biology, New Series, 80 (Hutchens, T.W., ed.) pp. 149-168, Alan R. Liss, New York.
  • 40. Wells, J .A. (1990) Additivity of mutational effects in proteins. Biochemistry 29, 8509- -8517.
  • 41. Rydel, T.J.. Tulinsky, A., Bode. W. & Huber, R. (1991) Refined structure of the hirudin- thrombin complex.«/. Mol. Biol. 221,583-601.
  • 42. Stone, S.R. (1993) Interactions outside of the active site are a major determinant in the specificity of thrombin; in Innovations in Pro­teases and their Inhibitors (Aviles, F.X., ed.) pp. 125-140, de Gruyter, Berlin.
  • 43. Harayuma, II. & Wuthrich, K. (1989) Confor­mation of recombinant desulfatohirudin in aqueous solution determined by nuclear mag­netic resonance. Biochemistry 28, 4301-4312.
  • 44. Ayala, Y.M., Vindigni, A., Nayal, M., Spolar, R.S., Record, M.T., Jr. & Di Cera, E. (1995) Thermodynamic investigation of hirudin binding to the slow and fast forms of throm­bin: Evidence for folding transitions in the inhibitor and protease coupled to binding. J. Mol. Biol. 253, 787-798.
  • 45. Betz, A., llofsteenge, J. & Stone. S.R. (1992) pH dependence of the interaction of hirudin with thrombin. Biochemistry 31. 1168-1172.
  • 46. Turk, V. & Bode, W. (1991) The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 285. 213-219.
  • 47. Stubbs, M.T., Laber, B., Bode, W., Huber, R., Jerala, R„ Lenarcic, B. & Turk, V. (1990) The refined 2.4 A X-ray structure of recombinant stefin B in complex with the cysteine protei­nase papain: A novel type of proteinase inhibi­tor interaction. EMBO J. 9, 1939-1947.
  • 48. Bjork, I., Pol, E., Raub-Segall, E., Abraham- son, M., Rowan, A.D. & Mort, J.S. (1994) Differential changes in the association and dissociation rate constants for binding of cys­tatins to target proteinases occurring on N- terminal truncation of the inhibitors indicate that the mechanism varies with different en­zymes. Biochem. J. 299. 219-225.
  • 49. Hees, D.C. & Lipscomb. W.N. (1982) Refined crystal structure of the potato inhibitor com­plex of carboxypeptidase A at 2.5 A resolution. J. Mol. Biol. 160, 475-498.
  • 50. Lubieński, M.J., Bycroft, M., Freund, S.M.V. & Fersht. A.R. (1994) 13C Assignments and three-dimensional solution structure of bar- star using nuclear magnetic resonance spec­troscopy. Biochemistry 33, 8866-8877.
  • 51. Mauguen, Y., Hartley, R.W., Dodson, E.J.. Dodson, G.G., Bricogne, G., Chothia, C. & Jack. A. (1982) Molecular structure of a new family of ribonucleases. Nature 29, 162-164.
  • 52. Buckle, A.M., Schreiber, G. & Fersht, A.R. (1994) Protein-protein recognition: Crystal structural analysis of a barnase-barstar com­plex at 2.0 A resolution. Biochemistry 33, 8878-8889.
  • 53. Schreiber. G., Buckle, A.M. & Fersht, A.R. (1993) Stability and function: Two constraints in the evolution of barstar and other proteins. Structure 2, 945-951.
  • 54. Schreiber, G. & Fersht, G. (1995) Energetics of protein-protein interactions: Analysis of the barnase-barstar interface by single muta­tions and double mutant cycles. J. Mol. Biol. 248, 478-486.
  • 55. de Vos, A.M., Ultsch, M. & Kossiakoff, A.A. (1992) Human growth hormone and extracel­lular domain of its receptor: Crystal structure of the complex. Science 255, 306-312.
  • 56. Cunningham, B.C. & Wells, J.A. (1993) High- resolution epitope mapping of hGH-receptor interaction by alanine-scanningmutagenesis. Science 244, 1081-1085.
  • 57. Clackson, T. & Wells, J.A. (1995) A hot spot of binding energy in a hormone-receptor in­terface. Science 267, 383-386.
  • 58. Li, B., Jeff, Y.K., Oare, D., Yen, R., Fair- brother, W.J., Wells, J.A. & Cunningham, B.C. (1995) Minimization of a polypeptide hormone. Science 270. 1657-1660.
  • 59. Braisted, A.C. & Wells, J.A. (1996) Minimiz­ing a binding domain from protein A. Proc. Natl. Acad. Sei. U.S.A. 93, 5688-5692.
  • 60. Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L., Barrett, R.W., Jolliffe, L.K. & Dower, W.J. (1996) Small peptides as potent mimetics of the protein hormone erythropoie­tin. Science 273, 458-463.
  • 61. Freire, E. (1993) Structural thermodynamics prediction of protein stability and protein binding affinities. Arch. Biochem. Biophys. 303, 181-184.
  • 62. Spolar, R.S., Ha, J.-H. & Record, M.T., Jr. (1989) Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc. Natl Acad. Sci. U.S.A. 86, 8382-8385.
  • 63. Makhatadze, G.I. & Privalov, P.L. (1995) En­ergetics of protein structure. Adv. Protein Chem. 47, 307-425.
  • 64. Gomez, J. & Freire, E. (1995) Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. J. Mol. Biol. 252, 337-350.
  • 65. Murphy, K.P., Xie, D., Garcia, K.C., Amzel, L.M. & Freire, E. (1993) Structural energetics of peptide recognition: Angiotensin I I/anti­body binding. Proteins 15. 113-120.
  • 66. Wells, J.A. (1996) Binding in the growth hor­mone receptor complex. Proc. Natl Acad. Sci. U.S.A. 93, 1-6.
  • 67. Wells, J.A. & de Vos, A.M. (1993) Structure and function of human growth hormone: Im­plications for hematopoietins.A/i^w. Rev. Bio­phys. Biomol. Struct. 22, 329-351.
  • 68. Vargas-Madrazo, E., Lara-Ochoa, F. & AJma- gro, J.C. (1995) Canonical structure reper­toire of the antigen-binding site of immuno­globulins suggests strong geometrical restric­tions associated to the mechanism of immune recognition. J. Mol. Biol. 254, 497-504.
  • 69. Maccallum, R.M.. Martin, A.C.R. & Thornton, J.M. (1996) Antibody-antigen interactions: Contact analysis and binding site topography. J. Mol. Biol. 262, 732-745.
  • 70. Davies, D.R. & Padlan, E.A. (1990) Antibody- antigen complexes. Annu. Rev. Biochem. 59, 439-473.
  • 71. Davies, D.R. & Cohen, G.H. (1996) Interac­tions of protein antigens with antibodies. Proc. Natl. Acad. Sci. U.S.A. 93, 7-12.
  • 72. Fields. B.A., Goldbaum. F.A.. Dall'Acqua, W., Malchiodi, E.L.. CaucrhfT, A., Schwarz, F.P., Ysern, X., Foljak, R.J. & Mariuzza, R.A. (1996) Hydrogen bonding and solvent struc­ture in an antigen-antibody interface. Crystal structures and thermodynamic charac­terization of three Fv mutants complexed with lysozyme. Biochemistry 35, 15494— -15503.
  • 73. Bhat, T.N., Bentley, G.A., Boulot, G., Greene, M.I., Tello, D., Dall'Acqua. W., Souchon, H., Schwarz. F.P., Mariuzza, R.A. & Poljak. R.J. (1994) Bound water molecules and conforma­tional stabilization help mediate an antigen- antibody association. Proc. Natl. Acad. Sci. U.S.A. 91, 1089-1093.
  • 74. Chacko. S., Silverton, E., Kam-Morgan, L., Smith-Gill, S., Cohen. G. & Davies, D. (1995) Structure of an antibody-lysozyme complex. Unexpected effect of a conservative mutation. J. Mol. Biol. 245, 261-274.
  • 75. Novotny, J., Bruccoleri, R.E. & Saul, F.A. (1989) On the atribution of binding energy in antigen-antibody complexes McPC 603, D1.3 and HyHEL-5. Biochemistry 28. 4735-4749.
  • 76. Bode. W., Walter, J.. Huber, R., Wenzel. H.R. & Tschcsche, H. (1984) The refined 2.2 Â (0.22 nm) X-ray structure of the ternary complex formed by bovine trvpsinogen, valine-valine and the Arg 15 analogue of bovine pancreatic trypsin inhibitor. Eur. J. Biochem. 144, 185- -190.
  • 77. Dall'Acqua, W., Goldman, ER., Eisenstain, E. & Mariuzza, R.A. (1996) A mutational analysis of the binding of two different pro­teins to the same antibody. Biochemistry 35, 9667-9676.
  • 78. Jin. L., Fendly, B.M. & Wells, J.A.( 1992) High resolution functional analysis of antibody-an­tigen interactions. J. Mol. Biol. 226.851 865.
  • 79. Jin, L. & Wells, J.A. (1994) Dissecting the energetics of an antibody-antigen interface by alanine shaving and molecular grafting. Pro­tein Sci. 3. 2351-2357.
  • 80. Murphy, K.P., Freire, E. & Paterson, Y. (1995) Con figuration al effects in antibody-antigen interactions studied by microcalorimetry. Proteins 21, 83-90.
  • 81. Janin, J. (1995) Elusive affinities. Proteins 21, 30-39.
  • 82. SherifT, S., Silverton, E.W.. Padlan, E.A., Co­hen, G.H., Smith-Gill, S.J., Finzell. B.C. & Davies, D.R. (1987) Three-dimensional struc­ture of an antibody-antigen complex. Proc. Natl. Acad. Sci. U.S.A. 84, 8075-8079.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-cafd7ee7-208e-4fa4-a1dc-be52386fdbdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.