PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 51 | 2 |

Tytuł artykułu

The role of labile iron pool in cardiovascular diseases

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Although multiple factors are associated with cardiovascular pathology, there is now an impressive body of evidence that free radicals and nonradical oxidants might cause a number of cardiovascular dysfunctions. Both direct damage to cellular com­ponents and/or oxidation of extracellular biomolecules, e.g. LDL, might be involved in the aetiology of cardiovascular diseases. The key molecules in this process seem to be iron and copper ions that catalyse formation of the highly reactive hydroxyl radi­cal. Chelation of iron ions has a beneficial effect on the processes associated with the development of atherosclerosis and formation of post-ischemic lesions. These find­ings are indirectly supported by the increasing body of evidence that stored body iron plays a crucial role in pathogenesis of atherosclerosis and ischemia/reperfusion injury.

Wydawca

-

Rocznik

Tom

51

Numer

2

Opis fizyczny

p.471-480,fig.,ref.

Twórcy

  • Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland

Bibliografia

  • Alayash AI, Patel RP, Cashon RE. (2001) Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. AntioxidRedox Signal.; 3: 313-27.
  • Andrews NC. (2000) Iron homeostasis: insights from genetics and animal models. Nat Rev Genet.; 1: 208-17.
  • Applegate LA, Luscher P, Tyrrell RM. (1991) Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res.; 51: 974-8.
  • Bacon BR, Tavill AS, Brittenham GM, Park CH, Recknagel RO. (1983) Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J Clin Invest.; 71: 429-39.
  • Brazzolotto X, Gaillard J, Pantopoulos K, Hentze MW, Moulis JM. (1999) Human cytoplasmic aconitase (iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding. J Biol Chem.; 274: 21625-30.
  • Breuer W, Epsztejn S, Millgram P, Cabantchik IZ. (1995) Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol.; 268: C1354-61.
  • Bulteau AL, Ikeda-Saito M, Szweda LI. (2003) Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry.; 42: 14846-55.
  • Castro LA, Robalinho RL, Cayota A, Meneghini R, Radi R. (1998) Nitric oxide and peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts. Arch Biochem Biophys.; 359: 215-24.
  • Chevion M, Jiang Y, Har-El R, Berenshtein E, Uretzky G, Kitrossky N. (1993) Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc Natl Acad Sci USA.; 90: 1102-6.
  • Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, Arosio P. (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J Biol Chem.; 275: 25122-9.
  • Cuzzocrea S, Zingarelli B, Costantino G, Szabo A, Salzman AL, Caputi AP, Szabo C. (1997) Beneficial effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase in a rat model of splanchnic artery occlusion and reperfusion. Br J Pharmacol.; 121: 1065-74.
  • De Flora S, Izzotti A, Walsh D, Degan P, Petrilli GL, Lewtas J. (1997) Molecular epidemiology of atherosclerosis. FASEB J.; 11: 1021-31.
  • Dillard C, Tappel A. (1979) Volatile hydrocarbon and carbonyl products of lipid peroxidation: A comparison of penthane, ethane, hexanal and acetone as in vivo indices. Lipids.; 14: 989-95.
  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI. (2000) Positional cloning of zebrafish ferroportin! identifies a conserved vertebrate iron exporter. Nature.; 403: 776-81.
  • Drapier JC. (1997) Interplay between NO and [Fe-S] clusters: relevance to biological systems. Methods.; 11: 319-29.
  • Duffy SJ, Biegelsen ES, Holbrook M, Russell JD, Gokce N, Keaney JF Jr, Vita JA. (2001) Iron chelation improves endothelial function in patients with coronary artery disease. Circulation.; 103: 2799-804.
  • Edwards JA, Garrick LM, Hoke JE. (1978) Defective iron uptake and globin synthesis by erythroid cells in the anemia of the Belgrade laboratory rat. Blood.; 51: 347-57.
  • Fleming MD, Trenor CC, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC. (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet.; 16: 383-6.
  • Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA.; 95: 1148-53.
  • Fridovich I. (1998) Oxygen toxicity: a radical explanation. J Exp Biol.; 201 (Pt 8): 1203-9.
  • Gackowski D, Kruszewski M, Jawien A, Ciecierski M, Olinski R. (2001) Further evidence that oxidative stress may be a risk factor responsible for the development of atherosclerosis. Free Radic Biol Med.; 31: 542-7.
  • Gackowski D, Kruszewski M, Bartlomiejczyk T, Jawien A, Ciecierski M, Olinski R. (2002) The level of 8- oxo-7,8-dihydro-2'-deoxyguanosine is positively correlated with the size of the labile iron pool in human lymphocytes. J Biol Inorg Chem.; 7: 548-50.
  • Galleano M, Puntarulo S. (1992) Hepatic chemiluminescence and lipid peroxidation in mild iron overload. Toxicology.; 76: 27-38.
  • Gardner PR. (1997) Superoxide-driven aconitase FE-S center cycling. Bioscience Rep.; 17: 33-42.
  • Gonzales S, Erario MA, Tomaro ML. (2002) Heme oxygenase-1 induction and dependent increase in ferritin. A protective antioxidant stratagem in hemin-treated rat brain. DevNeurosci.; 24: 161-8.
  • Greenberg GR, Wintrobe MM. (1946) A labile iron pool. J Biol Chem.; 165: 397-8.
  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature.; 388: 482-8.
  • Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A. (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J.; 7: 1124-34.
  • Jacobs A. (1977) An intracellular transit iron pool. Ciba Found Symp.; 51: 91-106.
  • Kakhlon O, Cabantchik ZI. (2002) The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med.; 33: 1037-46.
  • Kennedy MC, Antholine WE, Beinert H. (1997) An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J Biol Chem.; 272: 20340-7.
  • Knight JA. (1999) Free Radicals, Antioxidants, Aging and Disease. AACC Press, Washington, DC.
  • Konijn AM, Glickstein H, Vaisman B, Meyron-Holtz EG, Slotki IN, Cabantchik ZI. (1999) The cellular labile iron pool and intracellular ferritin in K562 cells. Blood.; 94: 2128-34.
  • Koppenol WH. (1998) The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med.; 25: 385-91.
  • Koppenol WH. (2001) The Haber-Weiss cycle — 70 years later. Redox Rep.; 6: 229-34.
  • Kruszewski M. (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res.; 531: 81-92.
  • Kruszewski M, Starzynski R, Drapier JC, Smuda E, Lipinski P. (2002) Modulation of IRP1 by NO: an unexpected correlation between RNA-binding activity of IRP1 and labile iron pool. Free Radic Biol Med.; 33: (Suppl. 2) S378.
  • Kvam E, Hejmadi V, Ryter S, Pourzand C, Tyrrell RM. (2000) Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet A radiation that depends on release of iron from heme. Free Radic Biol Med.; 28: 1191-6.
  • Lai CC, Huang WH, Klevay LM, Gunning WT, III, Chiu TH. (1996) Antioxidant enzyme gene transcription in copper-deficient rat liver. Free Radic Biol Med.; 21: 233-40.
  • Lee SH, Blair I A. (2001) Oxidative DNA damage and cardiovascular disease. Trends CardiovascMed.; 11: 148-55.
  • Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. (1999) Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet.; 21: 396-9.
  • Liochev SI, Fridovich I. (1999) The relative importance of HO. and ONOO- in mediating the toxicity of O^. Free Radic Biol Med.; 26: 777-8.
  • Lipinski P, Drapier JC. (1998) Interplay between ferritin metabolism, reactive oxygen species and nitric oxide. J Biol Inorg Chem.; 2: 559-66.
  • Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM. (2002) Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation.; 106: 927-32.
  • Matheis G, Sherman MP, Buckberg GD, Haybron DM, Young HH, Ignarro LJ. (1992) Role of L-arginine- nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol.; 262: H616-H620.
  • Matthews AJ, Vercellotti GM, Menchaca HJ, Bloch PH, Michalek VN, Marker PH, Murar J, Buchwald H. (1997) Iron and atherosclerosis: inhibition by the iron chelator deferiprone (L1). J Surg Res.; 73: 35-40.
  • McDonald C, Phillips W, Mower H. (1965) An electron spin resonance study of some complexes of iron, nitric oxide, and anionic ligands. J Am Chem Soc.; 87: 3319-26.
  • Meyron-Holtz EG, Vaisman B, Cabantchik ZI, Fibach E, Rouault TA, Hershko C, Konijn A M. (1999) Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritin. Blood.; 94: 3205-11.
  • Petrat F, De Groot H, Rauen U. (2001) Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochem J.; 356: 61-9.
  • Petrat F, De Groot H, Sustmann R, Rauen U. (2002) The chelatable iron pool in living cells: a methodically defined quantity. Biol Chem.; 383: 489-502.
  • Picard V, Epsztejn S, Santambrogio P, Cabantchik ZI, Beaumont C. (1998) Role of ferritin in the control of the labile iron pool in murine erythroleukemia cells. J Biol Chem.; 273: 15382-6.
  • Porreca E, Ucchino S, Di Febbo C, Di Bartolomeo N, Angelucci D, Napolitano AM, Mezzetti A, Cuccurullo F. (1994) Antiproliferative effect of desferrioxamine on vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb.; 14: 299-304.
  • Reddy BR, Kloner RA, Przyklenk K. (1989) Early treatment with deferoxamine limits myocardial ischemic/ reperfusion injury. Free Radic Biol Med.; 7: 45-52.
  • Ross R. (1999) Atherosclerosis — an inflammatory disease. N Engl J Med.; 340: 115-26.
  • Salvemini D, Wang ZQ, Bourdon DM, Stern MK, Currie MG, Manning PT. (1996) Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur J Pharmacol.; 303: 217-20.
  • Slezak J, Tribulova N, Pristacova J, Uhrik B, Thomas T, Khaper N, Kaul N, Singal PK. (1995) Hydrogen peroxide changes in ischemic and reperfused heart. Cytochemistry and biochemical and X-ray microanalysis. Am J Pathol.; 147: 772-81.
  • Soum E, Drapier JC. (2003) Nitric oxide and peroxynitrite promote complete disruption of the [4Fe-4S] cluster of recombinant human iron regulatory protein 1. J Biol Inorg Chem.; 8: 226-32.
  • Stadtman ER, Berlett BS. (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol.; 10: 485-94.
  • Steinberg D. (1993) Modified forms of low-density lipoprotein and atherosclerosis. J Intern Med.; 233: 227-32.
  • Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA.; 81: 3883-7.
  • Termini J. (2000) Hydroperoxide-induced DNA damage and mutations. MutatRes.; 450: 107-24.
  • Traverso N. (2001) Oxidative elements in the pathogenesis of atherosclerosis. Ital Heart J.; 2 (Suppl 3): 37S-9S.
  • Trosko JE, Chang CC. (1980) An integrative hypothesis linking cancer, diabetes and atherosclerosis: the role of mutations and epigenetic changes. Med Hypotheses.; 6: 455-68.
  • Ueno T, Yoshimura T. (2000) The physiological activity and in vivo distribution of dinitrosyl dithiolato iron complex. Jpn J Pharmacol.; 82: 95-101.
  • Van Lenten BJ, Prieve J, Navab M, Hama S, Lusis AJ, Fogelman AM. (1995) Lipid-induced changes in intracellular iron homeostasis in vitro and in vivo. J Clin Invest.; 95: 2104-10.
  • Vanin AF, Malenkova IV, Serezhenkov VA. (1997) Iron catalyzes both decomposition and synthesis of S- nitrosothiols: optical and electron paramagnetic resonance studies. Nitric Oxide.; 1: 191-203.
  • Vanin A, Kleschyov A. (1999) EPR detection and biological implications of nitrosyl iron complexes. In Nitric Oxide in Transplant Rejection and anti-tumor Defence. Lukiewicz S, Zweier JL, eds, pp 49-82. Kluwer Academic Publishing, Boston.
  • Woolum JC, Tiezzi E, Commoner B. (1968) Electron spin resonane of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim Biophys Acta.; 160: 311-20.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c3e29b09-964e-477a-bdb4-9e473f89230d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.