PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 78 | 3 |

Tytuł artykułu

Mechanical strength of stems in aquatic macrophytes

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In populations of submerged macrophytes, individuals are selected in terms of resistance to the effect of hydrodynamic forces. The aim of this study was to check whether individuals growing in river water are more tensile and bending resistant than plants occurring in places not exposed to flow stress. We determined the ultimate tensile strength of stems in four macrophyte species, Potamogeton natans, P. pectinatus, Batrachium fluitans and Chara fragilis, which occur in two environmental variants: in running (current velocity of 0.1-0.6 m/s-1) and stagnant water. In addition, flexure of P. natans stems from both environmental variants was examined. What is more, the type and arrangement of strengthening structures in stems of the plants under study were determined. Potamogeton natans stems are the most resistant to stretching (15.6±4.7 N), while stems of P. pectinatus (3.3±1.0 N) and Batrachium fluitans (2.6±0.8 N) are less resistant. Chara fragilis (0.6±0.3 N) has the least resistant stems. Batrachium, Chara and P. pectinatus are more resistant to stretching if they occur in a river current, whereas P. natans, in stagnant lake water. Ultimate bending moment of P. natans stems from lakes is also much greater than of stems from a river (9.75•10-3 – 4.25•10-3 Nm as compared to 2.12•10-3 – 1.00•10-3 Nm). The resistance of stems to breaking is directly proportional to the stem and thallus cross sectional areas. On the one hand, in all the studied Cormophyta species, the more resistant stems (in P. natans from stagnant water, in the others from running water) are thicker and characterised by a higher contribution of air spaces in the overall stem cross-section. On the other hand, the stems retain their species specific structure and have a similar proportion of strengthening elements.

Wydawca

-

Rocznik

Tom

78

Numer

3

Opis fizyczny

p.181-187,fig.,ref.

Twórcy

autor
  • University of Gdansk, Al.Legionow 9, 80-441 Gdansk, Poland
autor
autor

Bibliografia

  • BIEHLE G., SPECK T., SPATZ H.-C. 1998. Hydrodynamics and biomechanics of submerged water moss Fontinalis antipyretica - a comparison of specimens from habitats with different flow velocities. Bot. Acta 111: 42-50.
  • BLANCHETTE C.A. 1997. Size and survival of inertidal plants in response to wave action - a case study with Fucus gardneri. Ecology 78: 1563-1578.
  • BLANCHETTE C.A., MINER B.G., GAINES S.D. 2002. Geographic variability in form, size and survival of Egregia men- ziesii around point conception. California. Mar. Ecol. Prog. Ser. 239: 69-82.
  • BOEGER M.R., POULSON M.E. 2003. Morphological adaptations and photosynthetic rates of amphibious Veronica anagalis-aquatica L. under different flow regimes. Aquat. Bot. 75:123-135.
  • BRAUNE W., LEMAN A., TAUBERT H. 1975. Praktikum z anatomii roślin. PWN, Warszawa. (in Polish)
  • BREWER C., PARKER M. 1990. Adaptations of macrophytes to life in moving water: upslope limits and mechanical properties of stems. Hydrobiol. 194:133-142.
  • COOPS H., VELDE VAN DER G. 1996. Effects of waves on he- lopyte stands: mechanical characteristics of stems of Phragmi- tes australis and Scirpus lacustris. Aquat. Bot. 53: 175-185.
  • DENNY M.W., DANIEL T.L., KOEHLER M.A.R. 1985. Mechanical limits to size in wave-swept organisms. Ecological Monographs 55: 69-102.
  • EATON A.D., CLESCERI L.S., RICE E.W., GREENBERG A.E. 2005. Standard methods for the examination of water and wastewater. Am. Publ. Health Ass., Washington.
  • ESAU K. 1967. Plant anatomy. Jon Wiley & Sons, Inc., New York.
  • GERARD V.A. 1987. Hydrodynamic streamlining of laminaria saccharina Lamour in response to mechanical stress. J.Exp.Mar.Biol.Ecol. 107: 237-244.
  • GERLACH D. 1972. Zarys mikrotechniki botanicznej. PWRiL, Poznań. (in Polish)
  • HEJNOWICZ Z. 2002. Anatomia i histogeneza roślin naczyniowych. Organy wegetatywne. Wyd. Naukowe PWN, Warszawa. (in Polish)
  • HERMANOWICZ W., DOŻAŃSKA W., DOJLIDO J., KOZIO- ROWSKI B. 1999. Physico-chemical analysis of water and sewage. Arkady, Warszawa (in Polish).
  • HOLBROOK N.M., DENNY M.W., KOEHL M.A.R. 1991. Intertidal “trees”: consequences of aggregation on the mechanical and photosynthetic properties of sea-palm Postelsia palma- eformis. J. Exp. Mar. Biol. Ecol. 146: 39-67.
  • HURD C.L. 2000. Water motion, marine macroalgal physiology, and production. J. Phycol. 36: 453-472.
  • JACKELMAN J.J., BOLTON J.J. 1990. Form variation and productivity of an intertidal foliose Gigartina species (Rhodophyta) in relation to wave exposure. Hydrobiologia 204/205: 57-64.
  • JENKINS J.T., PROCTOR M.C.F. 1985. Water velocity, growth- form and diffusion resistances to photosynthetic Co2 uptake in aquatic bryophytes. Plant Cell. Environ. 8: 317-323.
  • JOHNSON A.S., KOEHL M.A.R. 1994. Maintenance of dynamic strain similarity and environmental stress factor in different flow habitats: thallus allometry and material properties of a giant kelp. J. Exp. Biol. 195: 381-410.
  • KAWAMATA S. 2001. Adaptive mechanical tolerance and di- slodgment velocity of the kelp Laminaria japonica in wave-induced water motion. Mar. Ecol. Progr. Ser. 211:89-104.
  • KOEHL M.A.R. 1986. Seaweds in moving water: form and mechanical function, pp. 603-634. In: T.J. Givinish (ed.), On the economy of plant formand function. Cambridge University Press, Cambridge.
  • MADSEN T.V., SRNDERGAARD M. 1983. The effects of current velocity on the photosynthesis of Callitriche stagnalis Scop. Aquat. Bot. 15: 187-193.
  • MOLLOY F.J., BOLTON J.J. 1996. The effect of wave exposure and depth on the morphology of inshore populations of the Namibian kelp Laminaria schinzii Foslie. Bot. Mar. 39: 525-531.
  • MOUSTAFA S.M.A., STOUT B.A., BRADLEY W.A. 1968. Elastic and inelastic stability of a biological structure. J. Agric. Eng. Res. 13: 64-82.
  • NIKLAS K.J. 1992. Plant biomechanics. An engineering approach to plant form and function. Univ. Chicago Press, Chicago, London, 607 pp.
  • RIIS T., BIGGS B.J.F. 2001. Distribution of macrophytes in New Zealand streams and lakes in relation to disturbance frequency and resource supply - a synthesis and conceptual model. New Zealand J. Marine Freshwater Res. 35: 255-267.
  • SAND-JENSEN K., MEBUS J.R. 1996. Fine-scale patterns of water velocity within macrophyte patches in streams. Oikos 76: 169-180.
  • SAND-JENSEN K., PEDERSEN O. 1999. Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biol. 42: 315-328.
  • SCHUTTEN J., DAVY A.J. 2000. Predicting the hydraulic forces on submerged macrophytes from current velocity, biomass and morphology. Oecologia 123: 445-452.
  • SZMEJA J. 1994. Effect of disturbances and interspecific competition in isoetid populations. Aquatic Bot. 48: 225-238.
  • SZMEJA J. 2006. Przewodnik do badań roślinności wodnej. Wyd. UG, Gdańsk. (in Polish)
  • UTTER B.D., DENNY M.W. 1996. Wave-induced forces on the giant kelp Macrocystis pyrifera (Agardh): field test of a computational module. J. Exp. Biol. 199: 2645-2654.
  • VELASCO D., BATEMAN A., REDONDO J.M., DEMEDINA V. 2003. An open channel flow experimental and theoretical study of resistance and turbulent characterization over flexible vegetated linings. Flow, Turbulence and Combusion 70: 69-88.
  • WALKER W.S. 1960. The effect of mechanical stimulation and etiolation on the collenchyma of Datura stramonium. Am. J. Bot. 47: 717-724.
  • WERNBERG T., COLEMAN M., FAIRHEAD A., MILLER S., THOMSEN M. 2003. Morphology of Eclonia radiata along its geographic distribution in south-western Australia and Australasia. Mar. Biol. 143: 47-55.
  • WERNBERG T., THOMSEN M.S. 2005. The effects of wave exposure on the morphology of Eclonia radiata. Aquat. Bot. 83: 61-70.
  • WHEELER W.N. 1988. Algal productivity and hydrodynamics - a synthesis. Prog. Phycol. Res. 6: 23-58.
  • ZEBROWSKI J. 1992. Complementary patterns of stiffness in stem and leaf sheaths of Triticale. Measurements of ultrasound velocity. Planta 187: 301-305.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c268a5a0-ecfb-47f1-9690-28a21e5a3d45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.