PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 14 | 4 |

Tytuł artykułu

Involvement of some low-molecular thiols in the destructive mechanism of cadmium and ethanol action on rat livers and kidneys

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The involvement of some low-molecular thiol compounds in the mechanisms of peroxidative action of cadmium (Cd) and ethanol (EtOH) was studied. Concentrations of reduced glutathione (GSH), metallothionein (Mt) and thiol (-SH) groups in protein and non-protein fractions were assessed in the homogenates of the liver and kidney of rats exposed to Cd (50 Cd/dm³ of drinking water) and EtOH (5 g EtOH/kg body weight/24 h, intragastrically), singly or in combination, for 12 weeks. Exposure to Cd caused a reduction in the concentration of GSH and non-protein SH groups in the liver and kidneys with a simultaneous increase in Mt level in these organs. The concentration of total SH groups increased only in kidneys. Administration of EtOH had no effect on Mt concentration in both organs, but caused a reduction in the concentration of GSH and non-protein SH groups. A reduction in the level of total SH groups following exposure to EtOH was also noted in the liver. In the group of rats with a simultaneous exposure to Cd and EtOH, GSH concentration was decreased in the liver compared to the control and Cd-exposed animals, and in the kidney in comparison to the control and EtOH-receiving rats. Following the combined exposure to Cd and EtOH, the concentration of non-protein SH groups decreased in the liver and kidneys in comparison to the control and Cd-exposed rats, and in the liver also in comparison to the EtOH group. Mt concentration increased in the liver and kidneys of animals exposed to a combination of Cd and EtOH, compared to the control and EtOH group, but was reduced compared to the Cd group. Combined administration of Cd and EtOH caused an increase in the concentration of total SH groups in the kidneys compared to the control, Cd and EtOH groups. A negative correlation was found between GSH concentration and malondialdehyde (MDA) levels and positive correlation between Mt and MDA. The intensity of lipid peroxidation as well as GSH and Mt concentrations influencing this process in the state of combined exposure to Cd and EtOH results both from independent actions of these substances and interactions between them. The study outcome seems to indicate that the Cd- and EtOH-induced reduction in GSH and non-protein SH groups in the liver and kidneys may be one of the mechanisms that leads to lipid peroxidation in these organs.

Wydawca

-

Rocznik

Tom

14

Numer

4

Opis fizyczny

p.483-489,ref.

Twórcy

  • Medical University of Bialystok, Mickiewicza 2c, 15 222 Bialystok, Poland
autor
autor
autor

Bibliografia

  • 1. ATSDR. Toxicological profile cadmium. Agency for Toxic Substances and Disease Registry, Atlanta, GA, 1999.
  • 2. WORLD HEALTH ORGANIZATION (WHO). Environmental Health Criteria, 134 Cadmium. IPCS, Geneva, 1992.
  • 3. BEM E. M., PIOTROWSKI J. K., TURZYŃSKA E. Cadmium, zinc and copper levels in the kidneys and liver of the inhabitants of north-eastern Poland. Pol. J. Occup. Med. Environ. 6, 133, 1993.
  • 4. BRZÓSKA M. M., MONIUSZKO-JAKONIUK J., PIŁAT-MARCINKIEWICZ B., SAWICKI B. Liver and kidney function and histology in rats exposed to cadmium and ethanol. Alcohol Alcohol. 38, 2, 2003.
  • 5. JURCZUK M., BRZÓSKA M. M., MONIUSZKO-JAKONIUK J., GAŁAŻYN-SIDORCZUK M., KULIKOWSKA-KARPIŃSKA E. Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem. Toxicol. 42, 429, 2004.
  • 6. STOHS S. J., BAGCHI D., HASSOUN E., BAGCHI M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J. Environ. Pathol. Toxicol. Oncol. 19, 201, 2000.
  • 7. CASALINO E., CALZARETTI G., SBLANO C., LANDRISCINA C. Molecular inhibitory mechanism of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179, 37, 2002.
  • 8. SHAIKH Z. A., VU T. T., ZAMAN K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol. Appl. Pharmacol. 154, 256, 1999.
  • 9. THURMAN R. G., BRADFORD B. U., IIMURO Y., FRANKENBERG M. V., KNECHT K. T., CONNOR H. D., ADACHI Y., WALL C., ARTEEL G. E., RAIEIGH J. A., FORMAN D. T., MASON R. P. Mechanism of alcohol-induced hepatotoxicity: studies in rats. Front. Biosci. 4, 42, 1999.
  • 10. WIŚNIEWSKA-KNYPL J. M., WROŃSKA-NOFER T. Biological markers of oxidative stress induced by ethanol and iron overload in rats. Int. J. Occup. Med. Environ Health 7, 355, 1994.
  • 11. MONTOLIU C., VALLES S., RENAU-PIQUERAS J., GUERII C. Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain. Effect of chronic ethanol consumption. J. Neurochem. 63, 1855, 1994.
  • 12. LI W., KAGAN H. M., CHOU I. N. Alterations in cytoskeletal organization and homeostasis of cellular thiols in cadmium-resistant cells. Toxicol. Appl. Pharmacol. 126, 114, 1994.
  • 13. HULTBERG B., ANDERSSON A., ISAKSSON A. Copper ions differ from other thiol reactive metals ions in their effects on the concentration and redox status of thiols in HeLa cell cultures. Toxicology 117, 89, 1997.
  • 14. VINA J. R., SPEZ G. T., VINA J. The physiological functions of glutathione. In: Handbook of Free Radicals and Antioxidants in Biomedicine (eds.: Miquel J., Quintanilha A. T., Weber H.), CRC Press, Boca Raton, vol. II, pp. 121-132, 1989.
  • 15. REED D. J. Glutathione: Toxicological implications. Ann. Rev. Pharmacol. Toxicol. 30, 603, 1990.
  • 16. MEISTER A. Glutathione, ascorbate, and cellular protection. Cancer Res. 54, 1969, 1994.
  • 17. GARCIA-FERNANDEZ A. J., BAYOUMI A. E., PEREZPERTEJO Y., MOTAS M., REGUERA R. M., ORDÓNEZ C., BALANA-FOUCE R., ORDÓNEZ D. Alterations of the glutathione-redox balance induced by metals in CHO-K1 cells. Comp. Biochem. Physiol. 132, 365, 2002.
  • 18. SCOTT R. B., REDDY K. S., HUSAIN K., SCHLORFF E. C., RYBAK L. P., SOMANI S. M. Dose response of ethanol on antioxidant defence system of liver, lung, and kidney in rat. Pathophysiology 7, 25, 2000.
  • 19. MEHTA A., FLORA S. J. S. Possible role of metal redistribution, hepatotoxicity and oxidative stress in chelating agents induced hepatic and renal metallothionein. Food Chem. Toxicol. 39, 1029, 2001.
  • 20. PARK J. D., LIU Y., KLAASSEN C. D. Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology 163, 93, 2001.
  • 21. BRZÓSKA M. M., MONIUSZKO-JAKONIUK J. JURCZUK M., GAŁAŻYN-SIDORCZUK M. Cadmium turnover and changes of zinc and copper body status of rats continuously exposed to cadmium and ethanol. Alcohol Alcohol. 37, 213, 2002.
  • 22. SATO M., BREMNER I. Oxygen free radicals and metallothionein. Free Rad. Biol. Med. 14, 325, 1993.
  • 23. NATH R., KUMAR D., TIMAO L., SINGAL P. K. Metallothionein, oxidative stress and the cardiovascular system. Toxicology 155, 17, 2000.
  • 24. SATO M., KONDOH M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J. Exp. Med. 196, 9, 2002.
  • 25. ZHOU Z., SUN X., KANG Y. J. Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress. Exp. Biol. Med. 227, 214, 2002.
  • 26. BRZÓSKA M. M., KAMIŃSKI M., SUPERNAK-BOBKO D., ZWIERZ K., MONIUSZKO-JAKONIUK J. Changes in the structure and function of the kidney of rats chronically exposed to cadmium. I. Biochemical and histopathological studies. Arch. Toxicol. 77, 344, 2003.
  • 27. CHALKLEY S. R., RICHMOND J., BARLTROP D. Measurement of vitamin D3 metabolites in smelter workers exposed to lead and cadmium. Occup. Environ. Med. 55, 446, 1998.
  • 28. VIARENGO A., PONZANO E., DONDERO F., FABBRI R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to mediterranean and antarctic molluscs. Mar. Environ. Res. 44, 69, 1997.
  • 29. ELLMAN G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70, 1959.
  • 30. OH S. I., KIM CH. I., CHUN H. J., PARK S. CH. Chronic ethanol consumption affects glutathione status in rat liver. J. Nutr. 128, 758, 1998.
  • 31. FIGUEIREDO-PEREIRA M. E., YAKUSHIN S., COHEN G. Distribution of the intercellural sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J. Biol. Chem. 273, 12703, 1998.
  • 32. RIKANS L. E., YAMANO T. Mechanisms of cadmium-mediated acute hepatotoxicity. J. Biochem. Mol. Toxicol. 14, 110, 2000.
  • 33. HAIDARA K., MOFFATT P., DENIZEAU F. Metallothionein induction attenuates the effects of glutathione depletors in rat hepatocytes. Toxicol. Sci. 49, 297, 1999.
  • 34. WAALKES M. P., KLAASSEN C. D. Concentration of metallothionein in major organs of rats after administration of various metals. Fund. Appl. Toxicol. 5, 473, 1985.
  • 35. KLAASSEN C. D., LIU J., CHOUDHURI S. Metallothionein: an intercellular protein to protect against cadmium toxicity. Annu. Rev. Toxicol. 39, 267, 1999.
  • 36. KANG Y. J. The oxidant function of metallothionein in the heart. Proc. Soc. Exp. Biol. Med. 222, 263, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b6dadf31-1954-4940-bab8-5840e1bc32bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.