PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 51 | 1 |

Tytuł artykułu

Fizjologiczne i genetyczne podstawy reakcji roslin na jony glinu

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Physiological and genetic basis of plant reaction to aluminium ions were presented. The mechanisms of aluminium toxicity and aluminium tolerance were discussed with the special reference to findings of aluminium tolerance markers and their chromosomal location.

Wydawca

-

Rocznik

Tom

51

Numer

1

Opis fizyczny

s.35-52,bibliogr.

Twórcy

autor
  • Instytut Hodowli i Aklimatyzacji Roslin, Radzikow, 03-510 Blonie

Bibliografia

  • [1] Allan E.A., Trewavas A. 1985. Quantitative changes in calmodulin and NAD-kinase during early cell development in the roots apex of Pisum sativum L. Planta 165: 493-501.
  • [2] Anioł A. 1991. Genetics of acid tolerant plant. Kluwer Academic Publishers. Printed in the Netherlands: 1007-1017.
  • [3] Anioł A. 1995. Physiological aspects of aluminium tolerance associated with the long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor Appl. Genet. 91: 510-516.
  • [4] Anioł A. 1996. Aluminium uptake by roots of rye seedlings of differing tolerance to aluminium toxicity. Euphytica 92: 155-162.
  • [5] Anioł A., Gustafson P. 1984. Chromosome location of genes controlling aluminium tolerance in wheat, rye and triticale. Canadian Journal of Genetics and Cytology 26: 701-705.
  • [6] Barcelo J., Guevara P., Poschenrieder Ch. 1993. Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. sp. mexicana). Plant and Soil 154: 249-255.
  • [7] Barnabas B., Pfahler P.L., Kovacs G. 1991. Direct effect of colchicine to produce dihaploid plants in wheat (Triticum aestivum L). Theor. Appl. Genet. 81: 675-678.
  • [8] Berzonsky W.A. 1992. The genomic inheritance of aluminium tolerance in 'Atlas 66' wheat. Genome 3 5: 689-693.
  • [9] Blamey F.P.C., Edmeades D.C., Wheeler D.M. 1992. Empirical models to approximate calcium and magnesium amelioration effects and genetic differences in aluminium tolerance in wheat. Plant Soil 144: 281-287.
  • [10] Degenhardt J., Larsen P. B., Howell S.H., Kochian L.V. 1998. Aluminium resistance in the Arabidopsis mutant alr-104 is caused by aluminium-induced increase in rhizosphere pH. Plant Physiol. 117: 19-27.
  • [11] De la Fuente J.M., Ramirez-Rodriguez V., Cabrera-Ponce J.L., Herrera-Estrella L. 1997. Aluminium tolerance in transgenic plants by alteration in citrate synthesis. Science 276: 1566-1568.
  • [12] Delhaize E., Craig S., Beaton C.D., Bennd R.J., Jagadish V.C., Randall P.J. 1993. Aluminium tolerance in wheat (Triticum aestivum L). I. Update and distribution of aluminium root apices. Plant Physiol. 103: 685-693.
  • [13] Delhaize E., Ryan P.R., Randall P.J. 1993. Aluminium tolerance in wheat (Triticum aestivum L). II. Aluminium-stimulated excretion of malic from root apices. Plant Physiol. 103: 695-702.
  • [14] Delhaize E., Hebb D.M., Ryan P.R. 2001. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 125: 2059-2067.
  • [15] Ezaki B., Gardner R.C., Ezaki Y., Matsumoto H. 2000. Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidate stress. Plant Physiol. 122: 657-665.
  • [16] Felle H.H., Tretyn A., Wagner G. 1992. The role of the plasma membrane Ca2+ -A TPase in Ca2+ homeostasis in Sinapis alba root hairs. Planta 188: 306-313.
  • [17] Gallego F.J., Benito C. 1997. Genetic control of aluminium tolerance in rye (Secale cereale L). Theor. Appl. Genet. 95: 393-399.
  • [18] Gallego F.J., Calles B., Benito C. 1998. Molecularmarkers linked to the aluminium tolerance gene in rye (Secale cereale L). Theor. Appl. Genet. 97: 1104-1109.
  • [19] Gallego F.J., Lopez-Solanilla E., Figueiras A.M., Benito C. 1998. Chromosomal location of PCR fragments as a source of DNA markers linked to aluminium tolerance genes in rye. Theor. Appl. Genet. 96: 426-434.
  • [20] Hawes M.C., Gunawardena U., Miyasaka S.C., Zhao X. 2000. The role of root border cells in plant defence. Trends in Plant Sci. 5: 128-133.
  • [21] Jones D.L., Kochian L.V., Gilroy S. 1998. Aluminium induced a decrease in cytosolic calcium concentration in BY-2 tobacco cell culture. Plant Physiol. 116: 81-89.
  • [22] Kerridge P.C., Kronstad W.E. 1968. Evidence of genetic resistance to aluminium toxicity in wheat (Triticum aestivum VILL., HOST). Crop Sci. 60: 710-711.
  • [23] Kinraide T.B. 1993. Aluminium enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. Physiol. Plant. 88: 619-625.
  • [24] Kinraide T.B., Ryan P.R., Kochian L.V. 1992. Interaction effects of Al3+, H+ and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 99: 1461-1468.
  • [25] Kitagawa T., Morishita T., Tachibana Y., Namai H., Ohta Y., Ota Y. 1986. Differential aluminium resistance of wheat varieties and secretion of organic acids. Jap. J. Soil Sci. Plant Nutr. 57: 352-358.
  • [26] Kochian L.V. 1995. Cellular mechanisms of aluminium toxicity and resistance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 46: 237-260.
  • [27] Kollmeier M., Dietrich P., Bauer C.S., Horst W.J., Hedrich R. 2001. Aluminium activates a citrate-permeable anion channel in the aluminium-sensitive zone of the maize root apex. A comparison between an aluminium-sensitive and an aluminium-resistant cultivar. Plant Physiol. 126: 379-410.
  • [28] Law C.N. 1983. Chromosome engineering in wheat breeding and its implications for molecular genetic engineering. W: Genetic Engineering. J.K. Setlaw (red.), Plenum Press, vol. 5: 157-172.
  • [29] Lenoble M.E., Blevins D.G., Sharp R.E., Cumbie B.G. 1996. Prevention of aluminium toxicity with supplemental boron. I. Maintenance of root elongation and cellular structure. Plant Cell and Environ. 19: 1132-1142.
  • [30] Li X.F., MaJ.F., Hiradate S., Matsumoto H. 2000. Mucilage strongly binds aluminium but does not prevent roots from aluminium injury in Zea mays. Physiol. Plant. 108: 152-160.
  • [31] Li X.F., Ma J.F., Matsumoto H. 2000. Pattern of Al-induced secretion of organic acids differs between rye and wheat. Plant Physiol. 123: 1537-1543.
  • [32] Luo M.C., Dvorak J. 1996. Molecular mapping of an aluminium tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91: 31-35.
  • [33] Łukaszewski K.M., Blevins D.G. 1996. Root growth inhibition in boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate matabolism. Plant Physiology II: 1135-1140.
  • [34] Matsumoto H. 1991. Biochemical mechanism of the toxicity of aluminium and the sequestration of aluminium in plant cells. W: R.J. Wright, V.C. Baligar, R.P. Murrmann (red.) Plant-Soil Interactions at Low pH. Kluwer Academic Publishers, Dordrecht, The Nederlands: 825-838.
  • [35] Matsumoto H. 2000. Cell biology of Al tolerance and toxicity in higher plants. Int. Rev. Cytol. 200: 1-46.
  • [36] Miftahudin, Scoles G.J., Gustafson J.P. 2002. AFLP markers tightly lined to the aluminium - tolerance gene Alt3 in rye (Secale cereale L.). Theor. Appl. Genet. 104: 626-631.
  • [37] Minella E., Sorrels M.E. 1992. Aluminium tolerance in barley: Genetic relationships among genotypes of diverse origin. Crop Sci. 32: 593-598.
  • [38] Minella E., Sorrels M.E. 1997. Inheritance and chromosome location of Alp, a gene controlling almninium tolerance in „Dayton" barley. Plant Breed. 116: 465-569.
  • [39] Miyasaka S.C, Buta J.G., Howell R.K., Foy C.D. 1991. Mechanism of aluminium tolerance in snapbeans: root exudation of citric acid. Plant Physiol. 96: 737-743.
  • [40] Miyasaka S.C., Hawes M.C. 2001. The possible role of root border cells in detection and avoidance of aluminium toxicity. Plant Physiol. 125: 1978-1987.
  • [41] Miyasaka S.C., Kochian L.V., Shaff J.E., Foy C.D. 1989. Mechanism of aluminium tolerance in wheat. Planta Physiol. 91: 1188-1196.
  • [42] Mugai E.N., Agong S.G., Matsumoto H. 2000. Aluminium tolerance mechanisms in Phaseolus vulgaris L.: Citrate Synthase Activity and TTC reduction are weil correlated with citrate secretion. Soil Sci. Plant Nutr. 46: 939-950.
  • [43] Nawrot M., Szarejko I., Małuszyński M.2001. Barley mutants with increased tolerance to aluminium toxicity. Euphytica 120: 345-356.
  • [44] Osawa H., Matsumoto H. 2000. Properties of signal transduction pathway in the Al.-responsive malate excretion of wheat roots. International Symposium on Impact of Potential Tolerance of Plants on the Increased Productivity under Aluminium Stress. Kurashiki, Japan: 75-76.
  • [45] Papernik L.A., Bethea A.S., Singleton T.E., Magalhaes J.V., Galvin D.F., Kochian L.V. 2001. Physiological basis of reduced Al. tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212: 829-834.
  • [46] Pellet D.M., Grunes D.L., Kochian L.V. 1995. Organic acid exudation as an aluminium-tolerance mechanism in maize (Zea mays L). Planta 196: 788-795.
  • [47] Pineros M., Tester M. 1993. Plasma-membrane Ca2+ channels in root of higher plants and their role in aluminium toxicity. Plant Soil 155: 119-122.
  • [48] Polle E., Konzak A.F., Kittric J.A. 1978. Visual detection of aluminium tolerance levels in wheat by hematoxillin staining of seedling root. Crop Sci. 20: 416-417.
  • [49] Poschenrieder C., Llugany M., Barcelo J. 1995. Short-term effects of pH and aluminium mineral nutrition in maize varieties differing in proton and aluminium tolerance. J. Plant Nutr. 18: 1495-1507.
  • [50] Raman H., Moroni J.S., Sato K., Read B.J., Scatt B.J. 2002. Identification of AFLP and microsatellite markers linked with aluminium tolerance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105: 458-464.
  • [51] Reid D.A. 1970. Genetic control of reaction to aluminium in winter barley. Barley Genetics II, Proc. 2nd Int. Barley Genet. Symp. Washington State University Press, Pullman: 409-413.
  • [52] Rengel Z. 1992. Role of calcium in aluminium toxicity. New Phytol. 121: 499-513.
  • [53] Rengel Z. 1992. Disturbance of cell Ca2+ homeostasis as a primary trigger of Al toxicity syndrome. Plant Cell Environ. 15: 931-938.
  • [54] Riede C.R., Anderson J.A. 1996. Linkage of RFLP markers to an aluminium tolerance gene in wheat. Crop. Sci. 36: 905-909.
  • [55] Ryan P.R., Kinraide T.B., Kochian L.V. 1994. Al3+-Ca2+ interactions in aluminium rhizotoxicity. Planta 192: 98-103.
  • [56] Ryan P.R., Skerrett M., Findlay G.P., Delhaize E. 1997. Aluminium activates an anion channel in the apical cells of wheat roots. Proc. Natl. Acad. Sci. USA 94: 6547-6552.
  • [57] Silva I.R., Smyth T.J., Moxley D.F., Carter T.E., Allen N.S., Rufty T.W. 2000. Aluminium accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol. 123: 543-552.
  • [58] Ślaski J.J. 1989. Effect of aluminium on calmodulin-dependent and calmoduline-independent NAD-kinase activityin wheat (Triticum aestivum L.) root tips. J. Plant Physiol. 133: 696-701.
  • [59] Tabuchi A., Matsumoto H. 2000. Effects of aluminium on growth and cell wall properties of wheat roots. International Symposium on Impact of Potential Tolerance of Plants on the Increased Productivity under Aluminium Stress. Kurashiki, Japan: 31-32.
  • [60] Tamas L., Huttova J., Hajasova L., Mistrik I. 2001. The effect of aluminium on polypeptide pattern of cell wall proteins isolated from the roots of Al-sensitive and Al-resistant barley cultivars. Acta Physiol. Plant. 23: 161-168.
  • [61] Tang Y., Kochian L.V., Garvin D.F. 1999. Investigating the genetic and physiological complexity of aluminium tolerance in ,,Atlas 66" wheat. Plant Physiol. (Abstr.): 554.
  • [62] Tang Y., Sorrells M., Kochian L.V., Garvin D.F. 2000. Identification of RFLP markers linked to the barley aluminium tolerance gene Alp. Crop Sci. 40: 778-782.
  • [63] Taylor G.J. 1991. Current views of the aluminium stress response: The physiological basis of tolerance. Curr. Topfes in Plant Biochem Physiol. 10: 57-93.
  • [64] Yang Z.M., Sivaguru M., Horst W.J., Matsumoto H. 2000. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max L.). Physiol. Plant. 109: 79-83.
  • [65] Zhang W.H., Ryan P.R., Tyerman S.D. 2001. Malate-permeable channels and cation channels activated by aluminium in the apical cells of wheat roots. Plant Physiol. 125: 1459-1472.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b06696f7-91d9-482e-93fb-ca65725af0d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.