EN
Estrogens exert protective effects against neurotoxic changes induced by over-activation of ionotrophic glutamate receptors, whereas little is known about their interaction with changes mediated by metabotropic glutamate receptors. We evaluated effects of estrone on quisqualate (QA)-induced toxicity in neuronal cell cultures on 7 and 12 day in vitro (DIV). Twenty four hour exposure to QA (150 µM and 300 µM) significantly decreased cell survival in 7 day old cultures, but the 12 day old cultures were more resistant to its toxicity. DNQX (10 µM), an AMPA/kainate receptor antagonist, partly attenuated the toxic effects of QA, whereas LY 367 385 (100 µM), a selective mGluR1alpha antagonist, completely reversed the above effect. QA did not activate, but suppressed spontaneous caspase-3-like activity. Estrone (100 nM and 500 nM) attenuated QA-mediated neurotoxic effects independently of estrogen receptors, as indicated with ICI 182, 780 and without affecting the caspase-3-like activity. At early stage of development in vitro (7 DIV) toxic effects of QA were more profound and mediated mainly by metabotropic glutamate receptors of group I, whereas later (12 DIV) they were mediated mostly by ionotropic AMPA/kainate receptors. The toxic effects of QA were partly accompanied by anti-apoptotic action against spontaneous caspase-3-like activity, possibly due to modulation of neuronal plasticity.