PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 60 | 1 |

Tytuł artykułu

Nonlinearity in human resting, eyes-closed EEG: an in-depth case study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The question of nonlinearity in the human electroencephalogram (EEG) is important, since linear methods of EEG analysis are more well-developed and computationally faster than nonlinear methods. Furthermore, the presence or absence of nonlinearity has important theoretical implications for understanding the nature of the brain's oscillatory activity. Using a linear summary measure as a control, we report a failure to reject the null hypothesis of a (largely) stationary linear-Gaussian process for normal, resting, eyes-closed EEG from a single participant. We found significant evidence of nonlinearity at two occipital sites (01 and 02) where the 8-12.5 Hz alpha rhythm was prominent. However, this element of nonlinear structure appeared trivial, as (1) we found no evidence of time irreversibility at these loci, and (2) best-fitting linear models accounted on-average for over 94% of the variance in the data with nonlinear modeling doing no better. Half of the remaining variance could be accounted for by nonstationarity. While our findings technically apply only to the one individual tested, his EEG was typical of those seen under the conditions that we employed.

Wydawca

-

Rocznik

Tom

60

Numer

1

Opis fizyczny

p.109-121,fig.

Twórcy

autor

Bibliografia

  • Akaike H.A. (1974) A new look at the statistical model ident­ification. IEEE Trans. Auto. Control 19: 716-723.
  • Brandt M.E., Ademoglu A., Pritchard W.S. (2000) Nonlinear prediction and complexity of alpha EEG activity. Int. J. Bi- furc. Chaos (in press)
  • Cantero J.L., Atienza A., Salas R.M., Gomez C.M. (1999) Brain spatial microstates of human spontaneous alpha ac­tivity in relaxed wakefulness, drowsiness period, and REM sleep. Brain Topog. 11: 257-263.
  • Casdagli M. (1989) Nonlinear prediction of chaotic time series. PhysicaD 35: 335-356.
  • Diebold F.X. (1997) Elements of Forecasting. South-Western College Publishing, Cincinnati.
  • Diks C., van Houwelingen J.C., Takens F., DeGoede J. (1995) Reversibility as a criterion for discriminating time series. Phys. Let. A 201: 221-228.
  • Ehlers C.L.,Ehlers C.L., Havstad J., Prichard D., Theiler J. (1998) Low doses of ethanol reduce evidence for nonlinear structure in brain activity. J. Neurosci. 18: 7474-7486.
  • Ellner S. (1988) Estimating attractor dimensions from limited data: A new method, with error estimates. Phys. Let. A133:128-133.
  • Harvey A.C. (1989) Forecasting, structural time series models and the Kalman Filter. Cambridge University Press, Cam­bridge, 554 p.
  • Jarque C.M., Bera A.K. (1980) Efficient tests for normality, homoscedasticity and serial independence of regression re­siduals. Econom. Let. 6: 255-259.
  • Kaplan D., Glass L. (1995) Understanding nonlinear dyna­mics. Springer-Verlag, New York, 480 p.
  • Kantz H., Schreiber T. (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge, p. 304.
  • Kennel M.B., Brown R., Abarbanel H.D.I. (1992) Determin­ing minimum embedding dimension using a geometrical construct. Phys. Rev. A 45: 3403-3411.
  • Kennel M.B., Isabelle S. (1992) Method to distinguish possible chaos from colored noise and to determine embed­ding parameters. Phys. Rev. A 46: 3111-3118.
  • Lehmann D (1981) Spatial analysis of evoked and sponta­neous EEG potential fields. In: Recent advances in EEG and EMG data processing (Eds. N. Yamaguchi and K. Fujisawa). Elsevier, Amsterdam.
  • Ljung G.M., Box G.E.P. (1978) On a measure of lack of fit in time series models. Biometrika 66: 67-72.
  • Palus M. (1996) Nonlinearity in normal human EEG: Cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern. 75: 389-396.
  • Pritchard W.S., Duke D.W. (1992a) Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method. Psychophysiology 29: 182-192.
  • Pritchard W.S., Duke D.W. (1992b) Measuring chaos in the brain: A tutorial review of nonlinear dynamical EEG ana­lysis. Int. J. Neurosci. 67: 31-80.
  • Pritchard W.S., Duke D.W., Coburn K.L., Moore N.C., Tucker K. A., Jann M.W., Hostetler R. (1994) EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by nonlinear EEG measures. Elec- troencephalogr. Clin. Neurophysiol. 19: 118-130.
  • Pritchard W.S., DukeD.W., Krieble K.K. (1995) Dimensional analysis of resting human EEG II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. Psy- chophysiology 32: 486-491.
  • Pritchard W.S., Stam C.J. (2000) A new type of surrogate data for highly periodic time series: application to human alpha EEG comparing inferential with non-inferential statistical analysis. In: Nonlinear dynamics and brain functioning (Eds. N. Pradhan, P.E. Rapp and R. Sreenivasan). Nova Science, Huntington, NY. (in press)
  • Ramsey J.B., Rothman P. (1996) Time irreversibility and busi­ness cycle asymmetry. J. Money Credit Banking 28: 1-21.
  • Rombouts S.A.R.B., Keunen R.W.M., Stam C.J. (1995) In­vestigation of non-linear structure in multichannel EEG. Phys. Lett. A 202: 352-358.
  • Rothman P. (1996) FORT AN programs for running the TR test: A guide and examples. East Carolina University, De­partment of Economics, available on the internet at http://ecuvax.cis.ecu.edu/~ecrothma/rothman.htm.
  • Rosenstein M.T., Collins J.J., De Luca CJ. (1994) Recon­struction expansion as a geometry-based framework for choosing proper delay times. Physica D 73: 82-98.
  • Schreiber T., Schmitz A. (1996) Improved surrogate data for nonlinearity tests. Phys. Rev. E 77: 635-638.
  • Stam C.J., Nicolai J., Keunen R.W.M. (1998b) Nonlinear dy­namical analysis of periodic lateralized epileptifirm dis­charges. Clin. Electroencephalogr. 29: 101-105.
  • Stam C.J., Pijn J.P.M., Pritchard W.S. (1998a) Reliable detec­tion of non-linearity in experimental time series with strong periodic components. Physica D 112: 361-380.
  • Stam C.J., Pijn J.P.M., Suffczynski P., Lopes da Silva F.H. (1999a) Dynamics of the human alpha rhythm: Evidence for non-linearity?. Clin. Neurophysiol. 110: 1801-1813.
  • Stam C.J., Pritchard W.S. (1999) Dynamics underlying rhyth­mic and non-rhythmic variants of abnormal, waking delta activity. Int. J. Psychophysiol. 34: 5-20.
  • Stam C.J., van Woerkom T.C.A.M., Keunen R.W.M. (1997) Non-linear analysis of the electroencephalogram in Creutz­feldt-Jakob disease. Biol. Cybern. 77: 247-256.
  • Stam C.J., Vliegen J.H.R., Nicolai J. (1999b) Investigation of the dynamics underlying periodic complexes in the EEG. Biol. Cybern. 80: 57-69.
  • Takens F. (1985) On the numerical determination of the dimension of an attractor. Lect. Notes Math. 1125: 99­115.
  • Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58: 77-94.
  • Timmer J. (1998) Power of surrogate data testing with respect to nonstationarity. Phys. Rev. E 58 :5153-5156.
  • Weigend A.S. (1996) Time series analysis and prediction. In: Time series analysis and prediction (Eds. P. Smolensky, M.C. Mozer and D.E. Rumelhart). Lawrence Erlbaum, Hillsdale, NJ, p. 1-55.
  • Weiss G. (1975) Time-reversibility of linear stochastic pro­cesses. J. Appl. Prob. 12: 831-836.
  • White H. (1980) A heteroskedasticity-consistent covariance estimator and a direct test for heteroskedasticity. Econome- trica 48: 817-838.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9cff20fd-5e38-448b-8f92-9110f06b6379
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.