PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 4 |

Tytuł artykułu

The alpha2-adrenoceptors do not modify the activity of tyrosine hydroxylase, corticoliberine, and neuropeptide Y producing hypothalamic magnocellular neurons in the Long Evans and Brattleboro rats

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei are activated by body salt-fluid variations. Stimulation of 2-adrenoceptors by an agonist-xylazine (XYL) activates oxytocinergic but not vasopressinergic magnocellular neurons. In this study, tyrosine hydroxylase (TH), corticoliberine (CRH), and neuropeptide Y (NPY) magnocellular phenotypes, were analysed in response to 2-adrenoceptor manipulations and sustained hyperosmolality in vasopressin deficient homozygous Brattleboro (di/di) rats. Saline (0.9% NaCl, 0.1 ml/100g/bw), XYL (10 mg/kg/bw), atipamezole (ATIP, 2-adrenoceptors antagonist, 1 mg/kg/bw), and ATIP 5 min later followed by XYL, were applied intraperitoneally. Presence of immunolabeled Fos peptide signalized the neuronal activity. Ninety minutes after injections, the rats were anesthesized and sacrificed by transcardial perfusion with fixative. Coronal sections of 30 µm thickness double immunolabeled with Fos/neuropeptide were evaluated under light microscope. Under basal conditions, di/di in comparison with control Long Evans rats, displayed significantly higher number of TH, CRH, and NPY immunoreactive neurons in the SON and PVN (except NPY cells in PVN) and more than 90%, 75%, and 86% of TH, NPY, and CRH neurons, respectively, displayed also Fos signal in the SON. XYL did not further increase the number of Fos in the PVN and SON and ATIP failed to reduce the stimulatory effect of hypertonic saline in all neuronal phenotypes studied. Our data indicate that hyperosmotic conditions significantly influence the activity of TH, CRH, and NPY magnocellular neuronal phenotypes, but 2-adrenoceptors do not play substantial role in their regulation during osmotic challenge induced by AVP deficiency.

Wydawca

-

Rocznik

Tom

61

Numer

4

Opis fizyczny

p.391-398,fig.,ref.

Twórcy

  • Slovak Academy of Sciences, 3 Vlarska Street, 833 06 Bratislava, Slovakia
autor
autor
autor

Bibliografia

  • Dellmann HD, Rodriguez EM, Pena P, Siegmund I. Immunohistochemical investigation of the magnocellular peptidergic hypothalamo-neurohypophysial system of the rat chronically stimulated by long-term administration of hypertonic saline. Neuroendocrinology 1988; 47: 335-342.
  • Klenerova V, Krejci I, Sida P, Hlinak Z, Hynie S. Modulary effects of oxytocin and carbetocin on stress-induced changes in rat behavior in the open-field. J Physiol Pharmacol 2009; 60(2): 57-62.
  • Brunton PJ, Arunachalam S, Russel JA. Control of neurohypophysial hormone secretion, blood osmolality and volume in pregnancy. J Physiol Pharmacol 2008; 59: 27-45.
  • Kozniewska E, Romaniuk K. Vasopressin in vascular regulation and water homeostasis in the brain. J Physiol Pharmacol 2008; 59: 109-116.
  • Wsol A, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Kowalewski S, Puchalska L. Oxytocin in the cardiovascular responses to stress. J Physiol Pharmacol 2008; 59: 123-127.
  • Rokaeus A, Young WS, Mezey E. Galanin coexists with vasopressin in the normal rat hypothalamus and galanin's synthesis is increased in the Brattleboro (diabetes insipidus) rat. Neurosci Lett 1988; 90: 45-50.
  • Bondy CA, Whitnall MH, Brady LS, Gainer H. Coexisting peptides in hypothalamic neuroendocrine systems: some functional implications. Cell Mol Neurobiol 1989; 9: 427-446.
  • Mikkelsen JD, Schmidt P, Sheikh SP, Larsen PJ. Non-vasopressinergic, non-oxytocinergic neuropeptides in the rat hypothalamo-neurohypophyseal tract: experimental immunohistochemical studies. Prog Brain Res 1992; 191: 367-371.
  • Skutella T, Weber T, Jirikowski GF. Coexistence of oxytocin and tyrosine hydroxylase in the rat hypothalamus, an immunocytochemical study. J Neural Transm Gen Sect 1993; 94: 55-61.
  • Abramova M, Calas A, Thibault J, Ugrumov M. Tyrosine hydroxylase in vasopressinergic axons of the pituitary posterior lobe of rats under salt-loading as a manifestation of neurochemical plasticity. Neural Plast 2000; 7: 179-191.
  • Abramova M, Marsais F, Calas A, Thibault J, Ugrumov M. Dynamical study of tyrosine hydroxylase expression and its correlation with vasopressin turnover in the magnocellular neurons of the supraoptico-posthypophysial system under long-term salt loading of adult rats. Brain Res 2002; 925: 67-75.
  • Pirnik Z, Mravec B, Kiss A. Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: colocalization with vasopressin, oxytocin, and tyrosine hydroxylase. Neurochem Int 2004; 45: 597-607.
  • Pirnik Z, Kiss A. Fos expression variances in mouse hypothalamus upon physical and osmotic stimuli: co-staining with vasopressin, oxytocin, and tyrosine hydroxylase. Brain Res Bull 2005; 65: 423-431.
  • Imaki T, Katsumata H, Miyata M, Naruse M, Imaki J, Minami S. Expression of corticotropin releasing factor (CRF), urocortine and CRF type 1 receptors in hypotalamic-hypophyseal systems under osmotic stimulation. J Neuroendocrinol 2001; 13: 328- 338.
  • Larsen PJ, Sheikh SP, Mikkelsen JD. Osmotic regulation of neuropeptide Y and its binding sites in the magnocellular hypothalamo-neurohypophysial pathway. Brain Res 1992; 573: 181-189.
  • Kay-Nishiyama C, Watts AG. Dehydration modifies somal CRH immunoreactivity in the rat hypothalamus: an immunocytochemical study in the absence of colchicine. Brain Res 1999; 822: 251-255.
  • Dohanics J, Kovacs KJ, Makara GB. Oxytocinergic neurons in rat hypothalamus. Dexamethasone - reversible increase in their corticotropin-releasing factor-41-like immunoreactivity in the response to osmotic stimulation. Neuroendocrinology 1990; 51: 515-522.
  • Larsen PJ, Jukes KE, Chowdrey HS, Lightman SL, Jessop DS. Neuropeptide-Y potentiates the secretion of vasopressin from the neurointermediate lobe of the rat pituitary gland. Endocrinology 1994; 134: 1635-1639.
  • Valtin H, Schroeder HA, Bernischke K, Sokol HW. Familial hypothalamic diabetes insipidus in rats. Nature 1962; 196: 109-110.
  • Ma D, Morris JF. Protein synthetic machinery in the dendrites of the magnocellular neurosecretory neurons of wild-type Long-Evans and homozygous Brattleboro rats. J Chem Neuroanat 2002; 23: 171-186.
  • Kjaer A, Knigge U, Bach FW, Warberg J. Impaired histamine- and stress-induced secretion of ACTH and beta-endorphin in vasopressin-deficient Brattleboro rats. Neuroendocrinology 1993; 57: 1035-1041.
  • Hooi SC, Richardson GS, McDonald JK, Allen JM, Martin JB, Koening JI. Neuropeptide Y (NPY) and vasopressin (AVP) in the hypothalamo-neurohypophysial axis of salt-loaded or Brattleboro rats. Brain Res 1989; 486: 214-220.
  • Vandesande F, Dierickx K. Immuno-cytochemical demonstration of the inability of the homozygous Brattleboro rat to synthesize vasopressin and vasopressin-associated neurophysin. Cell Tissue Res 1976; 165: 307-316.
  • Sladek CD, Kapoor JR. Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Exp Neurol 2001; 171: 200-209.
  • Cole RL, Sawchenko PE. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 2002; 22: 959-969.
  • Ciosek J, Izdebska K. Thyrotropin-releasing hormone modulates vasopressin and oxytocin synthesis and release from the hypothalamo-neurohypophysial system of different age male rats. J Physiol Pharmacol 2009; 60(2): 63-70.
  • Cunningham ET Jr, Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamuss. J Comp Neurol 1988; 274: 60-76.
  • Aoki C, Go CG, Venkatesan C, Kurose H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 1994; 650: 181-204.
  • Pirnik Z, Jezova D, Mikkelsen JD, Kiss A. Xylazine activates oxytocinergic but not vasopressinergic hypothalamic neurons under normal and hyperosmotic conditions in rats. Neurochem Int 2005; 47: 458-465.
  • Bundzikova J, Pirnik Z, Mikkelsen JD, Zelena D, Kiss A. Activity variations in the hypothalamic oxytocinergic neurons under stimulation of alpha-2 adrenoceptors in osmotically stressed Brattleboro rats. Ann NY Acad Sci 2008; 1148: 154-160.
  • Bundzikova J, Pirnik Z, Zelena D, Mikkelsen JD, Kiss A. 2-adrenergic stimulation of oxytocinergic neurons in the hypothalamic magnocellular neurons is influenced by its antagonists in Brattleboro rats. Cell Mol Neurobiol 2009; 29: 1015-1023.
  • Woldbye DP, Greisen MH, Bolwig TG, Larsen PJ, Mikkelsen JD. Prolonged induction of c-fos in neuropeptide Y - and somatostatin-immunoreactive neurons of the rat dentate gyrus after electroconvulsive stimulation. Brain Res 1996; 720: 111-119.
  • Mikkelsen JD, Vrang N, Mrosovsky N. Expression of Fos in the circadian system following nonphotic stimulation. Brain Res Bull 1998; 47: 367-376.
  • Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. New York, Academic Press, 1998.
  • Kiss A, Mikkelsen JD. Oxytocin - anatomy and functional assignments: a minireview. Endocr Regul 2005; 39: 97-105.
  • Sawchenko PE, Swanson LW. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 1981; 214: 685-687.
  • Cunningham ET Jr, Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamuss. J Comp Neurol 1988; 274: 60-76.
  • Itoi K, Helmreich DL, Lopez-Figueroa MO, Watson SJ. Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine. J Neurosci 1999; 19: 5464-5472.
  • Perez R, Cox JF, Arrue R. Probable post-synaptic 2 adrenergic mediated effect of xylazine on goat uterine motility. J Vet Pharmacol Ther 1994; 17: 59-63.
  • Meister B, Cortes R, Villar MJ, Schalling M, Hokfelt T. Peptides and transmitter enzymes in hypothalamic magnocellular neurons after administration of hyperosmotic stimuli: comparison between messenger RNA and peptide/protein levels. Cell Tissue Res 1990; 260: 279-297.
  • Kiss JZ, Mezey E. Tyrosine hydroxylase in magnocellular neurosecretory neurons. Response to physiological manipulations. Neuroendocrinology 1986; 43: 519-525.
  • Abramova MA, Ugriumov MV, Calas A. Noradrenergic afferents modulation of tyrosine hydroxylase expression in rat supraoptic nucleus vasopressinergic neuron during ontogenesis. Zh Evol Biokhim Fiziol 2006; 42: 140-145.
  • Ma D, Rajakumaraswamy N, Maze M. Alph2-adrenoceptor agonists: shedding light on neuroprotection? Br Med Bull 2005; 71: 77-92.
  • Sinclair MD. A review of the physiological effects of alph2-agonists related to the clinical use of medetomidine in small animal practice. Can Vet J 2003; 44: 885-897.
  • Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield HJ Jr. The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res 1992; 572: 117-125.
  • Larsen PJ, Mikkelsen JD, Jessop DS, Lightman SL, Chowdrey HS. Neuropeptide Y mRNA and immunoreactivity in hypothalamic neuroendocrine neurons: effects of adrenalectomy and chronic osmotic stimulation. J Neurosci 1993; 13: 1138-1147.
  • Kagotani Y, Hashimoto T, Tsuruo Y, Kawano H, Daikoku S, Chihara K. Development of the neuronal system containing neuropeptide Y in the rat hypothalamus. Int J Dev Neurosci 1989; 7: 359-374.
  • Giovannelli L, Bloom FE. c-Fos protein expression in the rat subfornical organ following osmotic stimulation. Neurosci Lett 1992; 139: 1-6.
  • Pirnik Z, Petrak J, Bundzikova J, Mravec B, Kvetnansky R, Kiss A. Response of hypothalamic oxytocinergic neurons to immobilization stress is not dependent on the presence of corticotrophin releasing hormone (CRH): a CRH knock-out mouse study. J Physiol Pharmacol 2009; 60: 77-82.
  • Arima H, Aguilera G. Vasopressin and oxytocin neurones of hypothalamic supraoptic and paraventricular nuclei co-express mRNA for Type-1 and Type-2 corticotropin-releasing hormone receptors. J Neuroendocrinol 2000; 12: 833-842.
  • Dohanics J, Kovacs KJ, Makara GB. Oxytocinergic neurons in rat hypothalamus. Dexamethasone-reversible increase in their corticotropin-releasing factor-41-like immunoreactivity in response to osmotic stimulation. Neuroendocrinology 1990; 51: 515-522.
  • Kiss A, Aguilera G. Participation of 1-adrenergic receptors in the secretion of hypothalamic corticotropin-releasing hormone during stress. Neuroendocrinology 1992; 56: 153-160.
  • Itoi K, Seasholtz AF, Watson SJ. Cellular and extracellular regulatory mechanisms of hypothalamic corticotropin-releasing hormone neurons. Endocr J 1998; 45: 13-33.
  • Itoi K, Suda T, Tozawa F, et al. Microinjection of norepinephrine into the paraventricular nucleus of the hypothalamus stimulates corticotropin-releasing factor gene expression in conscious rats. Endocrinology 1994; 135: 2177-2182.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-981c9de4-b425-438a-a913-bdfedaeb1dd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.