PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 51 | 2 |

Tytuł artykułu

Localization of reactive oxygen species during symbiosis of early clover and Rhizobium leguminosarum bv. trifolii

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this work, clover was shown to respond to infection with Rhizobium leguminosarum bv. trifolii by producing reactive oxygen species. Superoxide radical and hydrogen peroxide were detected in infection threads and nodule primordia. The role of reactive oxygen species in clover-Rhizobium leguminosarum bv. trifolii symbiosis is discussed

Wydawca

-

Rocznik

Tom

51

Numer

2

Opis fizyczny

p.93-98,fig.,ref.

Twórcy

autor
  • Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Alesandrini F, Mathis R, Van de Sype G, Hérouart D, and Puppo A. 2003. Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytologist 158: 131-138.
  • Barloy-Hubler F, Chéron A, Hellégouarch A, and Galibert F. 2004. Smc01944, a secreted peroxidase induced by oxidative stresses in Sinorhizobium meliloti 1021. Microbiology 150: 657-664.
  • Bestwick CS, Brown IR, Bennett MHR, and Mansfield JW. 1997. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. The Plant Cell 9: 209-221.
  • Bethke PC, and Jones RL. 2001. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. The Plant Journal 25:19-29.
  • Bhattachrjee S. 2005. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Current Science 89: 1113-1121.
  • Bright J, Desikan R, Hancock JT, Weir IS, and Neill SJ. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H202 synthesis. The Plant Journal 45: 113-122.
  • Dombrecht B, Heusdens C, Beullens S, Verreth C, Mulkers E, Proost P, Vanderleyden J, and Michiels J. 2005. Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Molecular Microbiology 55: 1207-1221.
  • Durrant WE, and DONG X. 2004. Systemic acquired resistance. Annual Review of Phytopathology 42: 185-209.
  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, and Dolan L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446.
  • Gage DJ. 2004. infection and invasion of roots by symbiotic nitrogen-fixing rhizobia, during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews 68: 280-300.
  • Hernandez JA, Ferrer MA, Jimenez A, Ros Barcelo A, and Sevilla F. 2001. Antioxidant systems and 02--/H202 production in the apoplast of pea leaves. its relation with salt-induced necrotic lesion in minor veins. Plant Physiology 127: 817-831.
  • Hérouart D, Baudouin E, Frendo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, and Puppo A. 2002. Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume-Rhizobium symbiosis? Plant Physiology and Biochemistry 40: 619-624.
  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, and Lu G. 2003. Overexpression of gene encoding hydrogen peroxide generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology 133: 170-181.
  • Iwano M, Che F-S, Goto K, Tanaka N, Takayama S, and Isogai A. 2002. Electron microscopic analysis of the H202 accumulation preceding hypersensitive cell death induced by an incompatible strain of Pseudomonas avenae in cultured rice cells. Molecular Plant Pathology 3: 1-8.
  • Jamet A, Mandon K, Puppo A, and Herouart D. 2007. H202 is required for optimal establishment of the Medicago sati- va/Sinorhizobium meliloti symbiosis. Journal of Bacteriology 189: 8741-8754.
  • Jamet A, Sigaud S, van de Sype G, Puppo A, and Hérouart D. 2003. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Molecular Plant-Microbe Interactions 16: 217-225.
  • Joo JH, Bae YS, and Lee JS. 2001. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiology 126: 1055-1060.
  • Krishnan HB. 2002. NolX of Sinorhizobium fredii USDA 257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. Journal of Bacteriology 184: 831-839.
  • Kwak JM, Nguyen V, and Schroeder JI. 2006. The role of reactive oxygen species in hormonal responses. Plant Physiology 141:323-329.
  • Li AL, Wang ML, Zhou RH, Kong XY, Huo NX, Wang WS, and Jia JZ. 2005. Comparative analysis of early H202 accumulation in compatible and incompatible wheat-powdery mildew interactions. Plant Pathology 54: 308-316.
  • Liszkay A, van der Zalm E, and Schöpfer P. 2004. Production of reactive oxygen intermediates (O2--, H202, and .OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiology 136: 3114-3123.
  • Łotocka B, Kopcińska J, and Golinowski W. 1997. Morphogenesis of root nodules in white clover. i. Effective root nodules induced by the wild type Rhizobium leguminosarum biovar. trifolii. Acta Societatis Botanicorum Poloniae 66: 273-292.
  • McInnis SM, Desikan R, Hancock JT, and Hiscock SJ. 2006a. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytologist 172: 221-228.
  • McInnis SM, Emery DC, Porter R, Desikan R, Hancock JT, and Hiscock SJ. 2006b. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). Journal of Experimental Botany 57: 1835-1846.
  • Mehdy MC, Shanna YK, Sathasivan K, and Bays NW. 1996. The role of activated oxygen species in plant disease resistance. Physiologia Plantarum 98: 365-374.
  • Mellersh DG, Foulds IV, Higgins VJ, and Heath MC. 2002. H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. The Plant Journal 29: 257-258.
  • Montillet J-L, Chamnongpol S, Rusterucci Ch, Dat J, Van de Cotte B Agnel J-P, Battesti Ch, Inze D, Van Bergusen F, and Triantaphylides Ch. 2005. Fatty acid hydroperoxides and H2o2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiology 138: 1516-1526.
  • Orozco-Cardenas M, Narvaez-Vasquez J, and Ryan C.A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. The Plant Cell 13: 179-191.
  • Overmyer K, Brosche M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinänen M, Saarma M, Scheel D, and Kangasjärvi J. 2005. Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiology 137: 1092-1104.
  • Pauly N, Pucciariello Ch, Mandon K, Innocenti G, Jamet A, Baudouin E, Herouart D, Frendo P, and Puppo A. 2006. Reactive oxygen and nitrogen species and glutathione: key players in the legume symbiosis. Journal of Experimental Botany 57: 1769-1776.
  • Potocky M, Jones A, Bezvoda R, Smirnoff N, and Żarsky V. 2007. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytologist 174: 742-751.
  • Ramu SK, Peng H-M, and Cook DR. 2002. Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Molecular Plant-Microbe Interaction 15: 522-528.
  • Rathbun EA, Naldrett MJ, and Brewin NJ. 2002. identification of a family of extensin-like glycoproteins in the lumen of Rhizobium-induced infection threads in pea root nodules. Molecular Plant-Microbe Interactions 15: 350-359.
  • Renew S, Heyno E, Schöpfer P, and Liszkay A. 2005. Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. The Plant Journal 44: 342-347
  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, and Becana M. 2004. Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Molecular Plant-Microbe Interaction 17: 1294-1305.
  • Sahlman K, and Fahraeus G. 1963. An electron microscope study of root-hair infection by Rhizobium. Journal of General Microbiology 33: 425-427.
  • Santos R, Hérouart D, Puppo A, and Touati D. 2000. Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis. Molecular Microbiology 38: 750-759.
  • Santos R, Hérouart D, Sigaud S, Touati D, and Puppo A.. 2001. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Molecular Plant-Microbe Interaction 13: 413-420.
  • Shaw SL, and Long SR. 2003. Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiology 132: 2196-2204.
  • Suzuki K, Yano A, and Shinshi H. 1999. Slow and prolonged activation of the p47 protein kinase during hypersensitive cell death in cultured tobacco cells. Plant Physiology 119: 1465-1472.
  • Thordal-Christensen H, Zhang Z, Wei Y, and Collinge DB. 1997. Subcellular localization of H202 in plants. H202 accumulation in papillae and hypersensitive response during the barley-powder mildew interaction. The Plant Journal 11: 1187-1192.
  • Van Breusegem F, and Dat JF. 2006. Reactive oxygen species in plant death. Plant Physiology 141: 384-390.
  • Vasse J, de Billy F, and Truchet G. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interactions is accompanied by a hypersensitive reaction. The Plant Journal 4: 555-566.
  • Wisniewski J-P, Rathbun EA, Knox JP, and Brewin NJ. 2000. involvement of diamine oxidase and peroxidase in solubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Molecular Plant-Microbe Interactions 13: 413-420.
  • Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal 322: 681-692.
  • Zaninotto F, La Camera S, Polverari A, and Delledonne M. 2006. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology 141: 379-383.
  • Thordal-Christensen H, Zhang Z, Wei Y, and Collinge DB. 1997. Subcellular localization of H202 in plants. H202 accumulation in papillae and hypersensitive response during the barley-powder mildew interaction. The Plant Journal 11: 1187-1192.
  • Van Breusegem F, and Dat JF. 2006. Reactive oxygen species in plant death. Plant Physiology 141: 384-390.
  • Vasse J, de Billy F, and Truchet G. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interactions is accompanied by a hypersensitive reaction. The Plant Journal 4: 555-566.
  • Wisniewski J-P, Rathbun EA, Knox JP, and Brewin NJ. 2000. involvement of diamine oxidase and peroxidase in solubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Molecular Plant-Microbe Interactions 13: 413-420.
  • Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal 322: 681-692.
  • Zaninotto F, La Camera S, Polverari A, and Delledonne M. 2006. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology 141: 379-383

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-95bc8da1-6ee7-49ab-9a36-bc6892126d70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.