PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2007 | 66 | 1 |

Tytuł artykułu

The nerve cells of the neostriatum in the common shrew [Sorex araneus] and bank vole [Clethrionomys glareolus]: a Golgi comparative study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The studies were carried out on 12 brains derived from adult representatives of two mammalian orders, Insectivora and Rodentia. The neostriatum was compared in the common shrew (Sorex araneus) and bank vole (Clethrionomys glareolus). Three main types of striatal neuron were distinguished in the common shrew and five types of neurons in the bank vole. The fifth type of bank vole neurons was additionally divided into two subtypes with respect to dendritic pattern.

Wydawca

-

Czasopismo

Rocznik

Tom

66

Numer

1

Opis fizyczny

p.54-61,fig.,ref.

Twórcy

autor
  • University of Warmia and Mazuria, Plac Lodzki 3, 10-727 Olsztyn, Poland
autor
autor
autor
autor

Bibliografia

  • 1. Beckstead RM, Kersey KS (1985) Immunohistochemical demonstration of differential substance P, met-enkephalin and glutamicacid-decarboxylase-containing cell body and distribution in the corpus striatum of the cat. J Comp Neurol, 232: 481–498.
  • 2. Bolam JP, Hanley JJ, Booth PA, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat, 196: 527–542.
  • 3. Bolam JP, Izzo PN, Graybiel AM (1988) Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: a combined Golgi and immunocytochemical study in the cat and ferret. Neurosci, 24: 853–875.
  • 4. Bolam JP, Wainer BBH, Smith AD (1984) Characterisation of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neurosci, 12: 711–718.
  • 5. Braak H, Braak E (1982) Neuronal types in the striatum of man. Cell Tissue Res, 227: 319–342.
  • 6. Calabresi P, Centonze D, Gubellihni P, Marfia GA, Pisani A, Sancesario G, Bemardi G (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol, 6: 231–265.
  • 7. Calabresi P, Pisani A, Centonze D, Bemardi G (1997) Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neurosci Biobehav Rev, 21: 519–523.
  • 8. Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Rev, 34: 80–101.
  • 9. Danner H, Pfister C (1982) Changes in Golgi rapid impregnation in the caudate-putamen complex of the rat after pharmacologic pretreatment. J Hirnforsch, 23: 447–463.
  • 10. Deniau JM, Menetrey A, Charpier S (1996) The lamellar organization of the rat substantia nigra pars reticulata: segregated patterns of striatal afferents and relationship to the topography of corticostriatal projections. Neurosci, 73: 761–781.
  • 11. DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res, 114: 245–256.
  • 12. DiFiglia M, Pasik T, Pasik P (1978) A Golgi study of afferent fibers in the neostriatum of monkeys. Brain Res, 152: 341–347.
  • 13. DiFiglia M, Pasik T, Pasik P (1980) Ultrastructure of Golgi-impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum. J Neurocytol, 9: 471–492.
  • 14. Divac I, Mogensen J, Marinkovic S, Mårtensson R (1987) On the projections from the neostriatum to the cerebral cortex: the “displaced” neurons. Neurosci, 21: 197–205.
  • 15. Éder M, Vizkelety T, Tömböl T (1980) Nerve cells of the rabbit, cat, monkey and human caudate nucleus: a Golgi study. Acta Morphol, 28: 337–363.
  • 16. Fox CA, Andrade AN, Hillman DE, Schwyn RC (1971/72) The spiny neurons in the primate striatum: a Golgi and electron microscopic study. J Hirnforsch, 13: 181–201.
  • 17. Fox CA, Andrade AN, Schwyn RC, Rafols JA (1971/72) The aspiny neurons and the glia in the primate striatum: a Golgi and electron microscopic study. J Hirnforsch, 13: 341–362.
  • 18. Gaffan D (1996) Memory, action and the corpus striatum: current developments in the memory-habit distinction. Neurosci, 8: 33–38.
  • 19. Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol, 236: 454–476.
  • 20. Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol, 234: 317–333.
  • 21. Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science, 265: 1826–1831.
  • 22. Guevara-Guzman R, Kendrick KM, Emson PC (1993) Effect of substance P on acetylcholine and dopamine release in the rat striatum: a microdialysis study. Brain Res, 622: 147–154.
  • 23. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat, 26: 317–330.
  • 24. Iwahori N, Kiyota E (1987) A Golgi study on the neuronal organization of the neostriatum in the mouse. Neurosci, 4: 454–474.
  • 25. Izzo PN, Graybiel AM, Bolam JP (1987) Characterization of substance P- and [Met]enkephalin-immunoreactive neurons in the caudate nucleus of the cat and ferret by a single section Golgi procedure. Neurosci, 20: 577–587.
  • 26. Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from the thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol, 154: 349–378.
  • 27. Jueptner M, Frith CD, Brooks DJ, Frackowiak RSJ, Passingham RE (1997) The anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol, 77: 1325–1337.
  • 28. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurons: chemical, physiological and morphological characterization.Trends Neurosci, 18: 527–535.
  • 29. Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci, 10: 3421–3438.
  • 30. Kelley AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods. Neurosci, 7: 615–630.
  • 31. Kemp JM, Powel TPS (1971) The structure of the caudate nucleus of the cat. Light and electron microscopy. Phil Trans (London) SB, 262: 383–401.
  • 32. Kita H (1993) GABAergic circuits of the striatum. Prog Brain Res, 99: 51–72.
  • 33. Lévesque M, Bédard A, Cossette M, Parent A (2003) Novel aspects of the chemical anatomy of the striatum and its efferents projections. J Chem Neuroanat, 26: 271–281.
  • 34. Maurin Y, Banrezes B, Menetrey A, Mailly P, Deniau JM (1999) Three-dimensional distribution of nigrostriatal neurons in the rat: relation to the topography of striatonigral projections. Neurosci, 91: 891–909.
  • 35. Oertel WH, Mugnaini E (1984) Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci Lett, 47: 233–238.
  • 36. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci, 25: 563–593.
  • 37. Parent A, Còté PY, Lavoie B (1995) Chemical anatomy of primate basal ganglia. Prog Neurobiol, 46: 131–197.
  • 38. Park MR, Lighthall JW, Kitai ST (1980) Recurrent inhibition in the rat neostriatum. Brain Res, 194: 359–369.
  • 39. Phelps PE, Vaughn JE (1986) Immunocytochemical localization of choline acetyltransferase in rat ventral striatum: a light and electron microscopic study. J Neurocytol, 15: 595–617.
  • 40. Ribak CE, Vaughn JE, Roberts E (1979) The GABA neurons and their axon terminals in the rat corpus striatum as demonstrated by GAD immunohistochemistry. J Comp Neurol, 187: 261–284.
  • 41. Równiak M, Szteyn S, Robak A, Klawon M, Dusza M (1994) The types of neurons in the neostriatum of bison bonasus. Nissl and Golgi study. Folia Morphol, 53: 165–176.
  • 42. Royce GJ (1978) Cells of origin of subcortical afferents to the caudate nucleus: a horseradish peroxidase study in the cat. Brain Res, 153: 465–475.
  • 43. Staines WA, Fibiger HC (1984) Collateral projections of neurons of the rat globus pallidus to the striatum and substantia nigra. Exp Brain Res, 56: 217–220.
  • 44. Szteyn S, Robak A, Równiak M (2000) The types of neurons in the neostriatum of the guinea pig (Cavia porcellus): Golgi and Klüver-Barrera studies. Folia Morphol, 59: 31–35.
  • 45. Takada M, Tokuno H, Nambu A, Inase M (1998) Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res, 120: 114–128.
  • 46. Takagi H, Somogyi P, Smith AD (1984) Aspiny neurons and their local axons in the neostriatum of the rat: a correlated light and electron microscopic study of Golgi-impregnated material. J Neurocytol, 13: 239–265.
  • 47. Tokuno H, Inase M, Nambu A, Akazawa T, Miyachi S, Takada M (1999) Corticostriatal projections from distal and proximal forelimb representations of the monkey primary motor cortex. Neurosci Lett, 269: 33–36.
  • 48. Totterdell S, Bolam JP, Smith AD (1984) Characterization of pallidonigral neurons in the rat by a combination of Golgi impregnation and retrograde transport of horseradish peroxidase: their monosynaptic input from the neostriatum. J Neurocytol, 13: 593–616.
  • 49. Usuda I, Tanaka K, Chiba T (1998) Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res, 797: 73–93.
  • 50. Van Golf Racht-Delatour B, El Massioui N (1999) Rule-based learning impairment in rats with lesions to the dorsal striatum. Nuerobiol Learn and Mem, 72: 47–61.
  • 51. Veening JG, Cornelissen FM, Lieven PAJM (1980) The topical organization of the afferents to the caudatoputamen of the rat. A horseradish peroxidase study. Neurosci, 5: 1233–1268.
  • 52. Wasilewska B, Najdzion J, Szteyn S (2002) The neuronal structure of the globus pallidus in the rabbit: Nissl and Golgi studies. Folia Morphol, 61: 251–256.
  • 53. White NM, Salinas JA (2003) Mnemonic functions of dorsal striatum and hippocampus in aversive conditioning. Behav Brain Res, 142: 99–107.
  • 54. Wilson CJ, Chang H.T, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci, 10: 508–519.
  • 55. Yelnik, J, François C, Percheron G, Tandé D (1991) Morphological taxonomy of the neurons of the primate striatum. J Comp Neurol, 313: 273–294.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9349477f-7c87-49ad-bb62-119b842ff298
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.