PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 3 |

Tytuł artykułu

Lipid-binding proteins as stabilizers of membrane microdomains - possible physiological significance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Below the melting point temperature of lipids, artificial lipid membranes usually exist in the ordered gel phase. Above these temperatures lipid acyl chains become fluid and disordered (liquid-crystalline phase). Depending on the chemical composition of artificial membranes, phase separation may occur, leading to the formation of transient or stable membrane domains. A similar phase separation of lipids into ordered and disordered domains has been observed in natural membranes at physiological temperature range. Moreover, it has been reported that certain proteins prefer certain organization of lipids, as for example glycosylphosphatidylinositol-anchored proteins or Src family of tyrosine kinases. The aim of present review is to discuss the possibility that some lipid microdomains are induced or stabilized by lipid-binding proteins that under certain conditions, for example due to a rise of cytosolic Ca2+ or pH changes, may attach to the membrane surface, inducing clustering of lipid molecules and creation of ordered lipid microdomains. These domains may than attract other cytosolic proteins, either enzymes or regulatory proteins. It is, therefore, postulated that lipid microdomains play important roles within a cell, in signal transduction and enzymatic catalysis, and also in various pathological states, as Alzheimer's disease, anti-phosphatidylserine syndrome, or development of multidrug resistance of cancer cells.

Wydawca

-

Rocznik

Tom

47

Numer

3

Opis fizyczny

p.553-564,fig.

Twórcy

  • Nencki Institute of Experimental Biology, L.Pasteura 3, 02-093 Warsaw, Poland

Bibliografia

  • 1. Ames, J.B., Ishima, R., Tanaka, T., Gordon, J.I., Stryer, L. & Ikura, M. (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389, 198-202.
  • 2. Babiychuk, E.B., Palstra, R.J., Schaller, J., Kampfer, U. & Draeger, A. (1999) Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J. Biol. Chem. 274, 35191-35195.
  • 3. Bandorowicz-Pikula, J. & Pikula, S. (1998) Annexin and ATP in membrane traffic: A comparison with membrane fusion machinery. Acta Biochim. Polon. 45, 721-733.
  • 4. Bandorowicz-Pikula, J., Danieluk, M., Wrzosek, A., Bus, R., Buchet, R. & Pikula, S. (1999) Annexin VI: An intracellular target for ATP. Acta Biochim. Polon. 46, 801-812.
  • 5. Bazzi, M.D. & Nelsestuen, G.L. (1991a) Extensive segregation of acidic phospholipids in membranes induced by protein kinase C and related proteins. Biochemistry 30, 7961-7969.
  • 6. Bazzi, M.D. & Nelsestuen, G.L. (1991b) Highly sequential binding of protein kinase C and related proteins to membranes. Biochemistry 30, 7970-7977.
  • 7. Benz, J. & Hofmann, A. (1997) Annexins: From structure to function. Biol. Chem. 378, 177-183.
  • 8. Bergelson, L.O., Gawrisch, K., Ferretti, J.A. & Blumenthal, R. (eds.) (1995) Domain organization in biological membranes. Mol. Membr. Biol. 12, 1-162.
  • 9. Bottomley, M.J., Salim, K. & Panayotou, G. (1998) Phospholipid-binding protein domains. Biochim. Biophys. Acta 1436, 165-183.
  • 10. Brown, R.E. (1998) Sphingolipid organization in biomembranes: What physical studies of model membranes reveal. J. Cell Sci. 111, 1-9.
  • 11. Brown, D.A. & London, E. (1997) Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240, 1-7.
  • 12. Brown, D.A. & London, E. (1998) Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103-114.
  • 13. Brown, D.A. & London, E. (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221- 17224.
  • 14. Buday, L. (1999) Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Biochim. Biophys. Acta 1422, 187-204.
  • 15. Burger, A., Voges, D., Demange, P., Perez, C.R., Huber, R. & Berendes, R. (1994) Structural and electrophysiological analysis of annexin V mutants. Mutagenesis of human annexin V, an in vitro voltage-gated calcium channel, provides information about the structural features of the ion pathway, the voltage sensor and the ion selectivity filter. J. Mol. Biol. 237, 479-499.
  • 16. Creutz, C.E., Tomsing, J.L., Snyder, S.L., Gauthier, M.-C., Skouri, F., Beisson, J. & Cohen, J. (1998) The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J. Biol. Chem. 273, 1393-1402.
  • 17. Demange, P., Voges, D., Benz, J., Liemann, S., Gottig, P., Berendes, R., Burger, A. & Huber, R. (1994) Annexin V: The key to understanding ion selectivity and voltage regulation? Trends Biochem. Sci. 19, 272-276.
  • 18. Diakonova, M., Gerke, V., Ernst, J., Liautard, J.P., van der Vusse, G. & Griffiths, G. (1997) Localization of five annexins in J774 macrophages and on isolated phagosomes. J. Cell Sci. 110, 1199-1213.
  • 19. Dillon, S.R., Mancini, M., Rosen, A. & Schlissel, M.S. (2000) Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J. Immunol. 164, 1322-1332.
  • 20. Dubois, T., Oudinet, J.P., Mira, J.P. & Russo-Marie, F. (1996) Annexins and protein kinases C. Biochim. Biophys. Acta 1313, 290-294.
  • 21. Ediddin, M. (1992) Patches, posts and fences: Proteins and plasma membrane domains. Trends Cell Biol. 2, 376-386.
  • 22. Ediddin, M. (1997) Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7, 528-532.
  • 23. Fanning, A.S. & Anderson, J.M. (1999) Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432-439.
  • 24. Frey, B.M., Reber, B.F., Vishwanath, B.S., Escher, G. & Frey, F.J. (1999) Annexin I modulates cell functions by controlling intracellular calcium release. FASEB J. 13, 2235-2245.
  • 25. Fujimoto, T., Nakade, S., Miyawaki, A., Mikoshiba, K. & Ogawa, K. (1992) Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J. Cell Biol. 119, 1507-1513.
  • 26. Garver, W.S., Hossain, G.S., Winscott, M.M. & Heidenreich, R.A. (1999) The Npc1 mutation causes an altered expression of caveolin-1, annexin II and protein kinases and phosphorylation of caveolin-1 and annexin II in murine livers. Biochim. Biophys. Acta 1453, 193-206.
  • 27. Gerke, V. & Moss, S.E. (1997) Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129-154.
  • 28. Gelb, M.H., Cho, W. & Wilton, D.C. (1999) Interfacial binding of secreted phospholipases A2: More than electrostatics and a major role for tryptophan. Curr. Opin. Struct. Biol. 9, 428- 432.
  • 29. Glomset, J.A. (1999) Protein-lipid interactions on the surfaces of cell membranes. Curr. Opin. Struct. Biol. 9, 425-427.
  • 30. Harder, T. & Simons, K. (1997) Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534-542.
  • 31. Harlan, J.E., Yoon, H.S., Hajduk, P.J. & Fesik, S.W. (1995) Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. Biochemistry 34, 9859-9864.
  • 32. Hofmann, A., Escherich, A., Lewit-Bentley, A., Benz, J., Raguenes-Nicol, C., Russo-Marie, F., Gerke, V., Moroder, L. & Huber, R. (1998) Interactions of benzodiazepine derivatives with annexins. J. Biol. Chem. 273, 2885-2894.
  • 33. Holowka, D., Sheets, E.D. & Baird, B. (2000) Interactions between Fc(epsilon)RI and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci. 113, 1009-1019.
  • 34. Hosoya, H., Kobayashi, R., Tsukita, S. & Matsumura, F. (1992) Ca2+-regulated actin and phospholipid binding protein (68kD-protein) from bovine liver: Identification as a homologue for annexin VI and intracellular localization. Cell. Motil. Cytoskel. 22, 200-210.
  • 35. Ikezu, T., Trapp, B.D., Song, K.S., Schlegel, A., Lisanti, M.P. & Okamoto, T. (1998) Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein. J. Biol. Chem. 273, 10485- 10495.
  • 36. Ilangumaran, S., Arni, S., van Echten-Deckert, G., Borisch, B. & Hoessli, D.C. (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol. Biol. Cell 10, 891-905.
  • 37. Isas, J.M., Cartailler, J.P., Sokolov, Y., Patel, D.R., Langen, R., Luecke, H., Hall, J.E. & Haigler, H.T. (2000) Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry 39, 3015-3022.
  • 38. Johnson, J.E. & Cornell, R.B. (1999) Amphitropic proteins: Regulation by reversible membrane interactions. Mol. Membr. Biol. 16, 217-235.
  • 39. Kaetzel, M.A. & Dedman, J.R. (1995) Annexins: Novel Ca2+-dependent regulators of membrane function. News Physiol. Sci. 10, 171-176.
  • 40. Kamal, A., Ying, S. & Anderson, R.G.W. (1998) Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J. Cell Biol. 142, 937-947.
  • 41. Kaneko, N., Matsuda, R., Toda, M. & Shimamoto, K. (1997) Inhibition of annexin V-dependent Ca2+ movement in large unilamellar vesicles by K201, a new 1,4-benzothiazepine derivative. Biochim. Biophys. Acta 1330, 1-7.
  • 42. Kang, S.A., Cho, Y.J., Moon, H.B. & Na, D.S. (1996) Translocation of lipocortin (annexin) 1 to the membrane of U937 cells induced by phorbol ester, but not by dexamethasone. Br. J. Pharmacol. 117, 1780-1784.
  • 43. Katan, M. & Allen, V.L. (1999) Modular PH and C2 domains in membrane attachment and other functions. FEBSLett. 452, 36-40.
  • 44. Kemble, G.W., Danieli, T. & White, J.M. (1994) Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76, 383-391.
  • 45. Kinnunen, P.K., Koiv, A., Lehtonen, J.Y., Rytomaa, M. & Mustonen, P. (1994) Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem. Phys. Lipids 73, 181-207.
  • 46. Kurzchalia, T.V. & Parton, R.G. (1999) Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424-431.
  • 47. Lavie, Y., Fiucci, G., Czarny, M. & Liscovitch, M. (1999) Changes in membrane microdomains and caveolae constituents in multidrug-resistant cancer cells. Lipids 34 (Suppl.) S57-S63.
  • 48. Lecat, S. & Lafont, F. (1999) Annexins and their interacting proteins in membrane traffic. Protoplasma 207, 133-140.
  • 49. Leevers, S.J., Vanhaesebroeck, B. & Waterfield, M.D. (1999) Signalling through phosphoinositide 3-kinases: The lipids take centre stage. Curr. Opin. Cell Biol. 11, 219-225.
  • 50. Lemmon, M.A., Ferguson, K.M. & Schlessinger, J. (1996) PH domains: Diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85, 621-624.
  • 51. Lohi, O. & Lehto, V.P. (1998) VHS domain marks a group of proteins involved in endocytosis and vesicular trafficking. FEBS Lett. 440, 255- 257.
  • 52. Masserini, M., Palestini, P. & Pitto, M. (1999) Glycolipid-enriched caveolae and caveolae-like domains in the nervous system. J. Neurochem. 73, 1-11.
  • 53. McLaughlin, S. & Aderem, A. (1995) The myristoyl-electrostatic switch: A modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 235, 272-276.
  • 54. Meers, P. (1990) Location of tryptophans in membrane-bound annexins. Biochemistry 29, 3325-3330.
  • 55. Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G. & Brown, D.A. (1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 274, 3910-3917.
  • 56. Moffett, S., Brown, D.A. & Linder, M.E. (2000) Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191-2198.
  • 57. Mosior, M. & Epand, R.M. (1997) Protein kinase C: An example of a calcium-regulated protein binding to membranes. Mol. Membr. Biol. 14, 65-70.
  • 58. Muallem, S. & Lee, M.G. (1997) High [Ca2+]i domains, secretory granules and exocytosis. Cell Calcium 22, 1-4.
  • 59. Nalefski, E.A. & Falke, J.J. (1996) The C2 domain calcium-binding motif: Structural and functional diversity. Protein Sci. 5, 2375-2390.
  • 60. Nelsestuen, G.L. & Ostrowski, B.G. (1999) Membrane association with multiple calcium ions: Vitamin-K-dependent proteins, annexins and pentraxins. Curr. Opin. Struct. Biol. 9, 433-437.
  • 61. Nusrat, A., Parkos, C.A., Verkade, P., Foley, C.S., Liang, T.W., Innis-Whitehouse, W., Eastburn, K.K. & Madara, J.L. (2000) Tight junctions are membrane microdomains. J. Cell Sci. 113, 1771-1781.
  • 62. Ortega, D., Pol, A., Biermer, M., Jackle, S. & Enrich, C. (1998) Annexin VI defines an apical endocytic compartment in rat liver hepatocytes. J. Cell Sci. 111, 261-269.
  • 63. Parent, C.A. & Devreotes, P.N. (1999) A cell's sense of direction. Science284, 765-770.
  • 64. Pawson, T. (1995) Protein modules and signalling networks. Nature 373, 573-580.
  • 65. Perisic, O., Fong, S., Lynch, D.E., Bycroft, M. & Williams, R.L. (1998) Crystal structure of a calcium-phospholipid binding domain from cytosolic phospholipase A2. J. Biol. Chem. 273, 1596-1604.
  • 66. Pralle, A., Keller, P., Florin, E.L., Simons, K. & Horber, J.K. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997-1008.
  • 67. Rand, J.H. (1999) Annexinopathies a new class of diseases. N. Engl. J. Med. 340, 1035-1036.
  • 68. Ravanat, C., Torbet, J. & Freyssinet, J.M. (1992) A neutron solution scattering study of the structure of annexin-V and its binding to lipid vesicles. J. Mol. Biol. 226, 1271-1278.
  • 69. Raynal, P. & Pollard, H.B. (1994) Annexins: The problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim. Biophys. Acta 1197, 63-93.
  • 70. Rebecchi, M.J. & Scarlata, S. (1998) Pleckstrin homology domains: A common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27, 503-528.
  • 71. Rizo, J. & Suedhof, T.C. (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879-15882.
  • 72. Russo-Marie, F. (1999) Annexin V and phospholipid metabolism. Clin. Chem. Lab. Med. 37, 287-291.
  • 73. Sagot, I., Regnouf, F., Henry, J.P. & Pradel, L.A. (1997) Translocation of cytosolic annexin 2 to a Triton-insoluble membrane subdomain upon nicotine stimulation of chromaffin cultured cells. FEBS Lett. 410, 229-234.
  • 74. Scaife, R.M. & Margolis, R.L. (1997) The role of the PH domain and SH3 binding domains in dynamin function. Cell Signal. 9, 395-401.
  • 75. Schnitzer, J.E., Liu, J. & Oh, P. (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270, 14399-14404.
  • 76. Singer, S.J. & Nicolson, G.L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720-731.
  • 77. Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., Lisanti, M.P. (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19, 7289-7304.
  • 78. Smart, E.J., Ying, Y.S., Mineo, C. & Anderson, R.G. (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. U.S.A. 92, 10104­10108.
  • 79. Swairjo, M.A., Concha, N.O., Kaetzel, M.A., Dedman, J.R. & Seaton, B.A. (1995) Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct. Biol. 11, 968-974.
  • 80. Swairjo, M.A. & Seaton, B.A. (1994) Annexin structure and membrane interactions: A molecular perspective. Annu. Rev. Biophys. Biomolec. Struct. 23, 193-213.
  • 81. Tatulian, S.A. & Tamm, L.K. (2000) Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry 39, 496-507.
  • 82. Vaz, W.L.C. & Almeida, P.F.F. (1993) Phase topology and percolation in multi-phase lipid bilayers: Is the biological membrane a domain mosaic? Curr. Opin. Struct. Biol. 3, 482-488.
  • 83. Wang, T., Pentyala, S., Rebecchi, M.J. & Scarlata, S. (1999) Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry 38, 1517­1524.
  • 84. Welti, R. & Glaser, M. (1994) Lipid domains in model and biological membranes. Chem. Phys. Lipids 73, 121-137.
  • 85. Yang, L. & Glaser, M. (1995) Membrane domains containing phosphatidylserine and substrate can be important for the activation of protein kinase C. Biochemistry 34, 1500-1506.
  • 86. Zachowski, A. (1993) Phospholipids in animal eukaryotic membranes: Transverse asymmetry and movement. Biochem. J. 294, 1-14.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-90d236d3-54fd-419b-8927-d56567bc4e17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.