PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 55 | 2 |

Tytuł artykułu

Basic energetic parameters of Acanthamoeba castellanii mitochondria and their resistance to oxidative stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study was establishing the basic energetic parameters of amoeba Acanthamoeba castellaniimitochondria respiring with malate and their response to oxidative stress caused by hydrogen peroxide in the presence of Fe2+ions. It appeared that, contrary to a previous report (Trocha LK, Stobienia O (2007) Acta Biochim Polon 54: 797), H2O2-treated mitochondria of A. Castellanii did not display any substantial impairment. No marked changes in cytochrome pathway activity were found, as in the presence of an inhibitor of alternative oxidase no effects were observed on the rates of uncoupled and phosphorylating respiration and on coupling parameters. Only in the absence of the alternative oxidase inhibitor, non-phosphorylating respiration progressively decreased with increasing concentration of H2O2, while the coupling parameters (respiratory control ratio and ADP/O ratio) slightly improved, which may indicate some inactivation of the alternative oxidase. Moreover, our results show no change in membrane potential, Ca2+uptake and accumulation ability, mitochondrial outer membrane integrity and cytochrome crelease for 0.5–25 mM H2O2-treated versuscontrol (H2O2-untreated) mitochondria. These results indicate that short (5 min) incubation of A. Castellanii mitochondria with H2O2 in the presence of Fe2+ does not damage their basic energetics.

Wydawca

-

Rocznik

Tom

55

Numer

2

Opis fizyczny

p.349-355,ref.

Twórcy

  • Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
autor
autor
autor

Bibliografia

  • Czarna M, Jarmuszkiewicz W (2005) Activation of alternative oxidase and uncoupling protein lowers hydrogen peroxide formation in amoeba Acanthamoeba castellanii mitochondria. FEBS Lett 579:3136-3140.
  • Czarna M, Sluse FE, Jarmuszkiewicz W (2007) Mitochondria function plasticity in Acanthamoeba castellanii during growth in batch culture.J Bioenerg Biomembr 39:149-157.
  • Domka-Popek A, Michejda JW (1986) The upake of Ca2+by mitochondria of amoeba supported by malate or ATP. Bull Soc Sci Lett (Poznan) 25:5-13.
  • Edwards SW, Chagla AH, AJ Griffiths, Lloyd D (1977) The cytochromes of Acanthamoeba castellanii. Biochem J 168:113-121.
  • Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131-141.
  • Jarmuszkiewicz W, Wagner AM, Wagner MJ, Hryniewiecka L (1997) Immunological identification of the alternative oxidase of Acanthamoeba castellanii mitochondria. FEBS Lett 411:110-114.
  • Jarmuszkiewicz W, Sluse-Goffart CM, Hryniewiecka L, Michejda J, Sluse FE (1998) Electron partitioning between the two branching quinol-oxidizing pathways in Acanthamoeba castellanii mitochondria during steady-state state 3 respiration. J Biol Chem 273:10174-10180.
  • Jarmuszkiewicz W, Sluse-Goffart CM, Hryniewiecka L, Sluse FE (1999) Identification and characterization of a protozoan uncoupling protein in Acanthamoeba castellanii. J Biol Chem 274:23198-23202.
  • Jarmuszkiewicz W, Fraczyk O, Hryniewiecka L (2001) Effect of growth at low temperature on the alternative pathway respiration in Acanthamoeba castellaniimitochondria. Acta Biochim Polon 48:729-737.
  • Jarmuszkiewicz W, Antos N, Swida A, Czarna M, Sluse FE (2004a) The effect of growth at low temperature on the activity and expression of the uncoupling protein in Acanthamoeba castellanii mitochondria. FEBS Lett 569:178-184.
  • Jarmuszkiewicz W, Czarna M, Sluse-Goffart CM, Sluse FE (2004b) The contribution of uncoupling protein and ATP synthase to state 3 respiration in Acanthamoeba castellanii mitochondria. Acta Biochim Polon 51:533-538.
  • Jarmuszkiewicz W, Czarna M, Sluse FE (2005a) Substrate kinetics of the Acanthamoeba castellanii alternative oxidase and the effects of GMP. Biochim Biophys Acta 1708:71-78.
  • Jarmuszkiewicz W, Swida A, Czarna M, Antos N, Sluse-Goffart CM, Sluse FE (2005b) In phosphorylating Acanthamoeba castellanii mitochondria the sensitivity of uncoupling protein activity to GTP depends on the redox state of quinone. J Bioenerg Biomembr 37:97-107.
  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105-121.
  • Kicinska A, Swida A, Bednarczyk P, Koszela-Piotrowska I, Choma K, Dolowy K, Szewczyk A, Jarmuszkiewicz W (2007) ATP-sensitive potassium channel in mitochondria of the eukaryotic microorganism, Acanthamoeba castellanii. J Biol Chem 282:17433-17441.
  • Malis CD, Bonventre JV (1988) Susceptibility of mitochondrial membranes to calcium and reactive oxygen species: implications for ischemic and toxic tissue damage. Prog Clin Biol Res 282:235-259.
  • Minotti G, Aust SD (1987) The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem 262:1098-1104.
  • Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305-319.
  • Popov VN (2003) Possible role of free oxidation processes in the regulation of reactive oxygen species production in plant mitochondria. Biochem Soc Trans 31:1316-1317.
  • Radi R, Bush KM, Freeman BA (1993) The role of cytochrome c and mitochondrial catalase in hydroperoxide-induced heart mitochondrial lipid peroxidation. Arch Biochem Biophys 300: 409-415.
  • Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006-7015.
  • Slyshenkov VS, Moiseenok AG, Wojtczak L (1996) Noxious effects of oxygen reactive species on energy-coupling processes in Ehrlich ascites tumor mitochondria and the protection by pantothenic acid. Free Radic Biol Med 20:793-800.
  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891-904.
  • Swida A, Czarna M, Woyda-Ploszczyca A, Kicinska A, Sluse FE, Jarmuszkiewicz W (2007) Fatty acid efficiency profile in uncoupling of Acanthamoeba castellanii mitochondria. J Bioenerg Biomembr 39:109-115.
  • Trocha LK, Stobienia O (2007) Response of Acanthamoeba castellanii mitochondria to oxidative stress. Acta Biochim Polon 54:797-803.
  • Vercesi AE, Borecky J, Maia ID, Arruda P, Cuccovia IM, Chaimovich H (2006) Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57:383-404.
  • Vladimirov YA, Olenev VI, suslova TB, Cheremisina ZP (1980) Lipid peroxidation in mitochondrial membrane. Adv Lipid Res 17:173-249.
  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260:340-342.
  • Winger AM, Taylor NL, Heazlewood JL, Day DA, Millar AH (2007) The cytotoxic lipid peroxidation product 4-hydroxy-2-nonenal covalently modifies a selective range of proteins linked to respiratory function in plant mitochondria. J Biol Chem 282:37436-37447.
  • Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJA (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330-16336.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8e68e861-ea9d-4acb-a9d0-21be4b2c6f35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.