PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 54 | 3 |

Tytuł artykułu

The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Hsp70 (DnaK) is a highly conserved molecular chaperone present in bacteria, eukaryotes, and some archaea. In a previous work we demonstrated that DnaK from the archaeon Methanosarcina mazei (DnaKMm) and the DnaK from the bacterium Escherichia coli (DnaKEc) were functionally similar when assayed in vitro but DnaKMm failed to substitute for DnaKEc in vivo. Searching for the molecular basis of the observed DnaK species specificity we compared substrate binding by DnaKMm and DnaKEc. DnaKMm showed a lower affinity for the model peptide (a-CALLQSRLLS) compared to DnaKEc. Furthermore, it was unable to negatively regulate the E. coli σ32 transcription factor level under heat shock conditions and poorly bound purified σ32, which is a native substrate of DnaKEc. These observations taken together indicate differences in substrate specificity of archaeal and bacterial DnaKs. Structural modeling of DnaKMm showed some structural differences in the substrate-binding domains of DnaKMm and DnaKEc, which may be responsible, at least partially, for the differences in peptide binding. Size-exclusion chromatography and native gel electrophoresis revealed that DnaKMm was found preferably in high molecular mass oligomeric forms, contrary to DnaKEc. Oligomers of DnaKMm could be dissociated in the presence of ATP and a substrate (peptide) but not ADP, which may suggest that monomer is the active form of DnaKMm.

Wydawca

-

Rocznik

Tom

54

Numer

3

Opis fizyczny

p.509-522,fig.,ref.

Twórcy

  • University of Tennessee health Science Center, 19S Manassas Ave., Memphis, Tennessee 38163, USA
autor
autor
autor
autor

Bibliografia

  • Angelidis CE, Lazaridis I, Pagoulatos GN (1999) Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms. Eur J Biochem 259: 505–512.
  • Blond-Elguindi S, Fourie AM, Sambrook JF, Gething MJ (1993) Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J Biol Chem 268: 12730–12735.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
  • Buczynski G, Slepenkov SV, Sehorn MG, Witt SN (2001) Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants. J Biol Chem 276: 27231–27236
  • Bukau B, Deuerling E, Pfund C, Craig EA (2000) Getting newly synthesized proteins into shape. Cell 101: 119–122.
  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125: 443–451.
  • Clarens M, Macario AJ, Conway de Macario E (1995) The archaeal dnaK-dnaJ gene cluster: organization and expression in the methanogen Methanosarcina mazei. J Mol Biol 250: 191–201.
  • D’Auria S, Alfieri F, Staiano M, Pelella F, Rossi M, Scire A, Tanfani F, Bertoli E, Grycznyski Z, Lakowicz JR (2004) Structural and thermal stability characterization of Escherichia coli d-galactose/d-glucose-binding protein. Biotechnol Prog 20: 330–337.
  • Deuerling E, Bukau B (2004) Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit Rev Biochem Mol Biol 39: 261–277.
  • Erbse A, Mayer MP, Bukau B (2004) Mechanism of substrate recognition by Hsp70 chaperones. Biochem Soc Trans 32: 617–621.
  • Fernandez-Saiz V, Moro F, Arizmendi JM, Acebron SP, Muga A (2006) Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics. J Biol Chem 281: 7479–7488.
  • Fourie AM, Sambrook JF, Gething MJ (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269: 30470–30478.
  • Franzmann TM, Wuhr M, Richter K, Walter S, Buchner J (2005) The activation mechanism of Hsp26 does not require dissociation of the oligomer. J Mol Biol 350: 1083–1093.
  • Gisler SM, Pierpaoli EV, Christen P (1998) Catapult mechanism renders the chaperone action of Hsp70 unidirectional. J Mol Biol 279: 833–840.
  • Gragerov A, Zeng L, Zhao X, Burkholder W, Gottesman ME (1994) Specificity of DnaK-peptide binding. J Mol Biol 23: 848–854.
  • Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol 181: 434–443.
  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.
  • Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431–435.
  • Kedzierska S, Staniszewska M, Wegrzyn A, Taylor A (1999) The role of DnaK/DnaJ and GroEL/GroES systems in the removal of endogenous proteins aggregat ed by heat-shock from Escherichia coli cells. FEBS Lett 446: 331–337.
  • Kotlarz A, Szalewska-Palasz A, Wegrzyn G, Lipinska B (1998) Economical and efficient overproduction of the Escherichia coli 32 transcription factor. Biotechnol Tech 12.
  • Krzewski K, Kunikowska D, Wysocki J, Kotlarz A, Thompkins P, Ashraf W, Lindsey N, Picksley S, Głośnicka R, Lipińska B (2003) Characterisation of the anti-DnaJ monoclonal antibodies and their use to compare immunological properties of DnaJ and its human homologue HDJ-1. Cell Stress Chaperones 8: 8–17.
  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67: 225–257.
  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100: 95–97.
  • Liberek K, Galitski TP, Zylicz M, Georgopoulos C (1992) The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc Natl Acad Sci USA 89: 3516–3520.
  • Macario AJ, Dugan CB, Conway de Macario E (1991) A dnaK homolog in the archaebacterium Methanosarcina mazei S6. Gene 108: 133–137.
  • Macario AJ, Conway De Macario E (2001) The molecular chaperone system and other anti-stress mechanisms in archaea. Front Biosci 6: D262–283.
  • Macario AJ, Malz M, Conway de Macario E (2004) Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Front Biosci 9: 1318–1332.
  • Mayer MP, Schroder H, Rudiger S, Paal K, Laufen T, Bukau B (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7: 586–593.
  • Mehlert A, Young DB (1989) Biochemical and antigenic characterization of the Mycobacterium tuberculosis 71kD antigen, a member of the 70 kD heat-shock protein family. Mol Microbiol 3: 125–30.
  • Meersman F, Smeller L, Heremans K (2002) Comparative Fourier transform infrared spectroscopy study of cold-,pressure-, and heat-induced unfolding and aggregation of myoglobin. Biophys J 82: 2635–2644.
  • Minder C, Narberhaus F, Babst M, Hennecke H, Fischer HM (1997) The dnaKJ operon belongs to the sigma32-dependent class of heat shock genes in Bradyrhizobium japonicum. Mol Gen Genet 254: 195–206.
  • Mogk A, Bukau B, Lutz R, Schumann W (1999) Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dnaK genes. J Bacteriol 181: 1971–1974.
  • Moro F, Fernandez-Saiz V, Muga A (2004) The lid subdomain of DnaK is required for the stabilization of the substrate-binding site. J Biol Chem 279: 19600–19606.
  • Motohashi K, Taguchi H, Ishii N, Yoshida M (1994) Isolation of the stable hexameric DnaK. DnaJ complex from Thermus thermophilus. J Biol Chem 269: 27074–27079.
  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66: 64–93; table of contents.
  • Osborne HB, Nabedryk-Viala E (1982) Infrared measurements of peptide hydrogen exchange in rhodopsin. Metods Enzymol 88: 676–680.
  • Paek KH, Walker GC (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169: 283–290.
  • Palleros DR, Reid KL, Shi L, Fink AL (1993) DnaK ATPase activity revisited. FEBS Lett 336: 124–128.
  • Peitsch MC (1996) ProMod and Swiss-Model: Internetbased tools for automated comparative protein modelling. Biochem Soc Trans 24: 274–279.
  • Rudiger S, Mayer MP, Schneider-Mergener J, Bukau B (2000) Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. J Mol Biol 304: 245–251.
  • Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.
  • Schonfeld HJ, Schmidt D, Schroder H, Bukau B (1995) The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem 270: 2183–2189.
  • Sell SM, Eisen C, Ang D, Zylicz M, Georgopoulos C (1990) Isolation and characterization of dnaJ null mutants of Escherichia coli. J Bacteriol 172: 4827–4835.
  • Sussman MD, Setlow P (1987) Nucleotide sequence of a Bacillus megaterium gene homologous to the dnaK gene of Eschrichia coli. Nucleic Acids Res 15: 3923.
  • Szewczyk B, Harper DR (1994) Use of blotted proteins as immunogens. In Protein blotting — a practical approach. (D B ed) pp 189–205. Oxford University Press, Cary, NC.
  • Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82: 1074–1078.
  • Tilly K, Hauser R, Campbell J, Ostheimer GJ (1993) Isolation of dnaJ, dnaK, and grpE homologues from Borrelia burgdorferi and complementation of Escherichia coli mutants. Mol Microbiol 7: 359–69.
  • Truscott KN, Brandner K, Pfanner N (2003) Mechanisms of protein import into mitochondria. Curr Biol 13: R326–337.
  • Watanabe YH, Yoshida M (2004) Trigonal DnaK-DnaJ complex versus free DnaK and DnaJ: heat stress converts the former to the latter, and only the latter can do disaggregation in cooperation with ClpB. J Biol Chem 279: 15723–15727.
  • Wawrzynow A, Zylicz M (1995) Divergent effects of ATP on the binding of the DnaK and DnaJ chaperones to each other, or to their various native and denatured protein substrates. J Biol Chem 270: 19300–19306.
  • Wu B, Ang D, Snavely M, Georgopoulos C (1994) Isolation and characterization of point mutations in the Escherichia coli grpE heat shock gene. J Bacteriol 176: 6965–6973.
  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5: 781–791.
  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2: 153–158.
  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614.
  • Żmijewski MA, Macario AJ, Lipinska B (2004) Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. J Mol Biol 336: 539–549.
  • Żmijewski MA, Skórko-Glonek, J, Tanfani, F, Banecki B, Kotlarz A, Macario AJL, Lipińska B (2007) Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria. Acta Biochim Polon epub ahead of print (www.actabp.pl).
  • Zylicz M, Georgopoulos C (1984) Purification and properties of the Escherichia coli dnaK replication protein. J Biol Chem 259: 8820–8825.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8b2204e1-7f23-4e5f-a226-a807eb75734c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.