PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 34 | 1-2 |

Tytuł artykułu

Znaczenie magnezu w pozywieniu w prewencji powiklan cukrzycy

Autorzy

Warianty tytułu

EN
The role of dietary magnesium in preventing diabetic complications

Języki publikacji

PL

Abstrakty

PL
Male spożycie Mg może odgrywać rolę w rozwoju insulinooporności i cukrzycy oraz jej powikłań. Jest kilka mechanizmów, przez które deficyt magnezu może przyczynić się do powstawania wielu patologii u pacjentów z cukrzycą. Magnez Chroni ściany naczyń, przeciwstawiając się nadmiarowi wapnia oraz wywierając bezpośrednie działanie przeciw skurczowe na naczynia. Pomimo, że silą działania jest 3-5 razy słabszy od organicznych blokerów kanału wapniowego, posiada unikalne i potencjalnie użyteczne właściwości antagonizowania Ca2+. Oddziaływuje na liczne procesy obronne: przeciwdziała stresom, niedotlenieniu, uczuleniom, pobudza fagocytozę, wywiera efekty antytoksyczne, np. wobec glikozydów nasercowych, witaminy D. aldehydu octowego. Ma ścisłe powiązania z wydzielaniem epinefryny i norepinefryny przez rdzeń nadnerczy, a także wpływa na zmianę wrażliwości ich receptorów w tkankach obwodowych. Niedobór magnezu zwiększa toksyczność adrenaliny, natomiast wzrost stężenia magnezu w surowicy hamuje wydzielanie katecholamin przez rdzeń nadnerczy.
EN
Magnesium is an essential intracellular cation. Nearly 99% of the total body magnesium is located in bone or the intracellular space. Magnesium is a critical cation and cofactor in numerous intracellular processes. It is a cofactor for adenosine triphosphate; an important membrane stabilizing agent; required for the structural integrity of numerous intracellular proteins and nucleic acids; a substrate or cofactor for important enzymes such is adenosine triphosphatase, guanosine triphosphatase, phospholipase C, adenylate cyclase, and guanylate cyclase; a required cofactor for the activity of over 300 other enzymes; a regulator of ion channels; an important intracellular signaling molecule; and a modulator of oxidative phosphorylation. Finally, magnesium is intimately involved in nerve conduction, muscle contraction, potassium transport, and calcium channels. Magnesium deficiency is a common finding in patients with type 2 diabetes. In the USA, 25 to 39 % of outpatient diabetics have low concentrations of serum magnesium. Low serum magnesium concentrations in diabetics have also been found in several European countries, including Austria, Germany, Italy, France and Sweden. Magnesium depletion has a negative impact on glucose homeostasis and insulin sensitivity in people with type 2 diabetes as well as on the evolution of complications such as retinopathy, thrombosis, and hypertension. The reasons why magnesium deficiency occurs in diabetes are not clear. They may include increased urinary loss, lower dietary intake, or impaired intestinal absorption of magnesium compared to healthy individuals. Magnesium (Mg) deficiency could lead to hypertension by increasing angiotensin II action, decreasing the levels of vasodilatory prostaglandins (PGs), increasing the levels of vasoconstrictive PGs and growth factors, increasing vascular smooth muscle cytosolic calcium, impairs insulin release, produces insulin resistance, and alters lipid profile. All of these results of Mg deficiency favor the development of hypertension and atherosclerosis.

Wydawca

-

Rocznik

Tom

34

Numer

1-2

Opis fizyczny

s.261-269,bibliogr.

Twórcy

autor
  • Szkola Glowna Gospodarstwa Wiejskiego, Warszawa

Bibliografia

  • 1. ADA - American Diabetes Association. Magnesium supplementation in the treatment of diabetes. Diabet Care 1995, 18, 83-85.
  • 2. AL-Ghamdi S.M.G., Cameron E.C., Sutton R.A.L.. Magnesium deficiency: Pathophysiologic and clinical overview. Am J Kid Dis 1994, 24, 737-752.
  • 3. Bolan T.W., Gu J.L., Tokuyama Y. et al. Magnesium supplementation reduces development of diabetes in rat model of spontaneous NIDDM. Am J Physiol 1995, 269, E745-E752.
  • 4. Brown I.R., Mcbain A.M., Chalmers J. et al. Sex difference in the relationship of calcium and magnesium excretion to glycaemic control in type 1 diabetes mellitus. Clin Chim Acta 1999, 283, 119-128.
  • 5. Brown S.A., Sharpless J.L. Osteoporosis: An under-appreciated complication of diabetes. Clinical Diabetes 2004, 22, 10-20.
  • 6. Cines D.B., Pollack E.S., Buck C.A. et al. Endothelial cells in physiology and in the pathophysiology for vascular disorders. Blood 1998, 91, 3527-3561.
  • 7. Colditz G.A., Manson J.E., Stampfer M.J. et al. Diet and risk of clinical diabetes in women. Am J Clin Nut 1992, 55, 1018-1023.
  • 8. Djurhuus M.S., Skott P., Vaag A. et al. Hyperglycaemia enhances renal magnesium excretion in type 1 diabetic patients. Scand J Clin Lab Invest 2000, 60,403- 409.
  • 9. Eliasson B., Bjornsson E., Urbanavicius V. et al. Hyperinsulinaemia impairs gastrointestinal motility and slows carbohydrate absorption. Diabetologia 1995, 38, 79-85.
  • 10. Ferrannini E., Buzzigoli G., Bonadonna R. et al. Insulin resistance in essential hypertension. N Engl J Med 1987, 317, 350-357.
  • 11. Foster H.D. Diabetes mellitus and low environmental magnesium levels. Lancet 1987, 2, 633.
  • 12. Hollifield J.W. Thiazide treatment of hypertension. Effects of thiazide diuretics on serum potassium, magnesium, and ventricular ectopy. Am J Med 1986, 80,8-12.
  • 13. Humphries S., Kushner H. Falkner B. Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic Black Americans. Am J Hyperten 1999,12,747- 756.
  • 14. Kao W.H., Folsom A.R., Nieto F.J. et al. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Internal Med 1999, 159, 2151-2159.
  • 15. Kawano H., Yokoyama S., Smith T.L. et al. Effect of magnesium on secretion of platelet-derived growth factor by cultured human umbilical arterial endothelial cells. Magnes Res 1995, 2, 134-144.
  • 16. Kayne L.H., Lee D.B.N Intestinal magnesium absorption. Min Electrol Metab 1993, 19, 210-217.
  • 17. Laurant P., Berthelot A. Advances in Magnesium Research: Nutrition and Health. John Libbey k Company Ltd., London, 2001, 277-283.
  • 18. Li W., Zheng T., Wang J. et al. Extracellular magnesium regulates effects of vitamin B6, B12, and folate on homocysteinemia-induced depletion of intracellular free magnesium ions in canine cerebral vascular smooth muscle cells: possible relationship to [Ca2+]i, atherogenesis and stroke. Neurosci Lett 1999, 274,83- 86.
  • 19. Ma J., Folsom A.R., Melnick S.L. et al. Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in Communities Study. J Clin1 Epidemiol 1995, 48, 927-940.
  • 20. Maier J.A.M., Malpuech-Brugere C., Mariotti M. et i Advances in Magnesium Research: Nutrition and Health. John Libbey & Company Ltd, London, 2001,83-88.
  • 21. Meyer K.A., Kushi L.H., Jacobs D.R., Jr. et al. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 2000, 71, 921-930.
  • 22. Nadler J.L., Buchanan T., Natarajan R. et al. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 1993, 21, 1024-1029.
  • 23. Nadler J.L., Rude R.K. Disorders of magnesium metabolism. Endocrinol Metab Clin N Am 1995, 24, 623-641.
  • 24. Romani A., Marfella C., Scarpa A. Cell magnesium transport and homeostasis: role of intracellular compartments. Miner Electrol Metab 1993, 19, 282-289.
  • 25. Salmeron J., Ascherio A., Rimm E.B. et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997, 20, 545-550.
  • 26. Schmidt L.E., Arfken C.L., Heins J.M. Evaluation of nutrient intake in subjects with non-insulin dependent diabetes mellitus. J Am Diet Assoc 1994, 94, 773-774.
  • 27. Sheehan J.P. Magnesium deficiency and diabetes mellitus. Magnes Trace Elem 1991, 10, 215-219.
  • 28. Siegel D., Hulley S.B., Black D.M. et al. Diuretics, serum and intracellular electrolyte levels, and ventricular arrhythmias in hypertensive men. JAMA 1992, 267, 1083-1089.
  • 29. Stamler J.S., Osborne J.A., Jaraki O. et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1993, 91, 308-318.
  • 30. Steinberg D., Witzum J.L. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans. Trends Cardiovas Med 2001, 11, 93-102.
  • 31. Tosiello L. Hypomagnesemia and diabetes mellitus. A review of clinical implications. Arch Internal Med 156: 1143-1148.
  • 32. Touyz R.M. 2001. Advances in Magnesium Research: Nutrition and Health. John Libbey & Company Ltd., London, 1996, 341-346.
  • 33. White J.R. Jr., campbell R.K. Magnesium and diabetes: a review. Ann Pharmacother 1993, 27, 775-780.
  • 34. Yokoyama S., Nashida H.I., smith T.L. et al. Combined effects of magnesium deficiency and atherogenic level of low density lipoprotein on uptake and metabolism of low density lipoprotein by cultured human endothelial cells. II electron microscopic data. Magnes Res 1994, 7, 97-105.
  • 35. Zhou Q., Olinescu R.M, kummerow F.A. Influence of low magnesium concentrations in the medium on the antioxidant system in cultured human arterial endothelial cells. Magnes Res 1999, 12, 19-29.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-85ade31d-7764-4d16-a84b-ea8b1ea6f8a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.