New blocking group combinations for the machine-aided oligoribonucleotide synthesis on solid phase material have been developed and tested regarding their general application. An acetal function for 2'-OH protection offers a series of advantages in the synthetic approach but special conditions have to be fullfilled in order to guarantee a selective cleavage of the temporary 5'-OH blocking group such as the dansylethoxycarbonyl or even the acid-labile dimethoxytrityl group in the chain elongation process. The final removal of the 2'-0-acetal function in the partially deblocked oligomer proceeds unexpectedly well under weak acidic conditions due to a supposed intramolecular acid catalysis.
1. Dorman, M.A., Noble, S.A., McBride, L.J. & Caruthers, M.H. (1984) Synthesis of oligo- deoxynuclcotidcs and oligodeoxynucleotide analogs using phosphoramiditc intermediates. Tetrahedron 40,95-102.
2. Kôster, H., Biernat, J., McManus, J., Wolter. A.. Stumpe, A., Narang,Ch.K. & Sinha, N.D. (1984) Synthesis of oligodeoxynucleotides on contro- lled pore glass (CPG) using phosphate and a new phosphite triester approach. Tetrahedron 40,103-112.
3. Brown, T. & Brown, D.J.S. (1991) Modern machine-aided methods of oligodeoxy- ribonucleotide synthesis; in Oligonucleotides and Analogues (Eckstein, F., ed.) pp. 1-24,1RI. Press, Oxford.
4. Gait, M.J., Pritchard, C. & Slim, G. (1991) Oligoribonucleotide synthesis; in Oligonucleotides and Analogues (Eckstein, F., ed.) pp. 25-48, IRL Press, Oxford.
5. Usman, N., Ogilvie, K.K., Jiang, M.-Y. & Cedergren, R.J. (1987) Automated chemical synthesis of long oligoribonucleotides using 2'-0-si-lvlated ribonucleoside 3'-0-phosphora- midites on a controlled-pore glass support: Synthesis of a 43-nucleotide sequence similar to the 3'-half molecule of an Escherichia coli formvlmethionine tRNA. /. Am. Chem. Soc. 109, 7845-7854.
6. Ogilvie, K.K., Usman, N., Nicoghosian, K. & Cedergren. R.L. (1988) Total chemical synthesis of a 77-nucleotide-long RN A sequence having me- thionine-acceptance activity. Proc. Natl. Acad. Sci. U.S.A. 85. 5764-5768.
7. Scaringe,S.A., Francklyn,C. & Usman, N. (1990) Chemical synthesis of biologically active oligoribonucleotides using P-cyanoethy) protected ribonucleoside phosphoramidites. Nucleic Acids Res. 18,5433-5441.
8. Wu, T. & Ogilvie. K.K. (1990) A study on the alkylsilyi groups in oligoribonucleotides synthesis. /. Org. Chem. 55,4717-4724.
9. Little, M.H., Wright, P.B., Sinha, N.D., Bain. J.D. & Chamberlin, A.R. (1991) New nucleoside phosphoramidites and coupling protocols for solid-phase RNA synthesis. J. Org. Chem. 56, 4608-4615.
10. Beaucage, S.L. & Iyer, R.P. (1992) Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48, 2223-2311.
11. Gasparutto, D., Livache, T., Bazin, H., Duplaa, A.M., Guy, A., Khorlin, A., Molko, D., Roget, A. & Teoule, R. (1992) Chemical synthesis of a biologically active natural tRNA with its minor bases. Nucleic Acids Res. 20,5159-5166.
12. Gasparutto, D., Molko, D. & Teoule, R. (1990) Studies on the formation of the internucleotidic bond in RNA synthesis using dialkylamino phosphoroamidites. Nucleosides & Nucleotides 9, 1087-1098.
13. Little, H.M. (1993) Chain cleavage during deprotection of RNA synthesized by the 2'-0'-trialkylsilyl protection strategy. Nucleosides & Nucleotides 12,95-106.
14. Rao, M.V., Reese,C.B., Schehlmann, V. & Yu, P.S. (1993) Use of the l-(2-fluorophenylM-methoxy- piperidin-4-yl (Fpmp) protecting group in the solid-phase synthesis of oligo- and poly- -ribonucleotides. /. Chem. Soc. Perkin Trans. 1, 43-55.
15. Capaldi, D.C. & Reese, C.B. (1994) Use of the 1-(2-nuorophenyl)-4-methoxypiperidin-4-yl (Fpmp) and related protecting groups in oligoribonucleotide synthesis: Stability of internucleotide linkages to aqueous acid. Nucleic Acids Res. 22,2209-2216.
16. Stengele, K.P. & Pfleiderer, W. (1990) improved synthesis of oligodeoxyribonucleotides. Tetrahedron Lett. 31,2549-2552.
17. Himmelsbach, F., Schulz, B.S., Trichtinger, T., Charubala, R. & Pfleiderer, W. (1984) The p-nitrophenylethyl (NPE) group. A versatile new blocking group for phosphate and agly- cone protection in nucleosides and nucleotides. Tetrahedron 40, 59-72.
18. Reese, C.B., Saffhil!, R. & Sulston, J.E. (1967) A symmetrical alternative to the tetrahydro- pyranyl protecting group. /. Am. Chem. Soc. 89, 3366-3368.
19. Bergmann, F. & Pfleiderer, W. (1994) The 2- dansvlethoxycarbonyI (Dnseoc) group for protection of the 5'-hydroxyl function in oligodeoxyribonucleotide synthesis. Helv. Chim. Acta 76,203-215.
20. Bergmann, F. & Pfleiderer, W. (1994) The 2-dan- sylethoxycarbonyl (Dnseoc) group for protection of the 5'-hydroxy function in oligoribonucleotide synthesis. Helv. Chim. Ada 77, 481- -501.
21. Bergmann, F. & Pfleiderer, W. (1944) Solid-phase synthesis of oligoribonucleotides using the 2-dansylethoxycarbonyl (Dnseoc) group for 5'-hvdroxy protection. Helv. Chim. Acta TJ, 988-998.
23. Reese, C.B. & Skone, P.A. (1985) Action of acid on oligoribonucleotide phosphotriester intermediates. Effect of released vicinal hydroxy functions. Nucleic Acids Res. 13,5215-5231.
24. Reese, C.B., Serafinowska, H.T. & Zappia, G. (1986) An acctal group suitable for the protection of 2'-hydroxy functions in rapid oligoribonucleotide synthesis. Tetrahedron Lett. 27, 2291- -2294.
25. Rao, T.S., Reese, C.B., Serafinoska, H.T., Takaku, H. & Zappia, G. (1987) Solid phase synthesis of the 3'-terminal nonadecaribonucleoside octa- decaphosphate sequence of yeast alanine transfer ribonucleic acid. Tetrahedron Lett. 28, 4897-4900.
26. Sakatsume, O., Yamaguchi, T., Ishikawa, M., Hirao, I.. Miura, K. & Takaku. H. (1991) Solid- -phase synthesis of oligoribonucleotides bv the phosphoramidite approach using 2'-0-l-(2- -chloroethoxy)ethvl protection. Tetrahedron 47, 8717-6728.
27. Sakatsume, O., Ogawa, T., Hosaka, H., Kawa- shima, M., Takaki, M. & Takaku, H. (1991) Synthesis and properties of non-hammerhead RNA l-(2-chloroethoxy)ethvl group for the protection of 2'-hydroxyl function. Nucleosides & Nucleotides 10.141-153.