PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 39 | 2 |

Tytuł artykułu

Effect of single superphosphate fertilizer on survival and respiratory dynamics of Nile Tilapia, Oreochromis niloticus [Actinopterygii: Perciformes: Cichlidae]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Increasing global usage of inorganic fertilizers, including phosphate-based fertilizers has its negative consequences on the aquatic environment. Effects of single superphosphate fertilizer (SPF) remain unknown, particularly its influence on the respiratory dynamics of fish under continuous exposure. We investigated the effects of single SPF on the survival and respiratory dynamics of Nile tilapia, Oreochromis niloticus, under laboratory conditions. Materials and Methods. Nile tilapia fingerlings (of mixed sex) (5.40 . 0.03 g) were exposed to various concentrations of the fertilizer in five treatment regimes (in triplicate): 0.88, 1.75, 3.50, 7.00, 14.00 g . L–1 (and 0.00 g . L–1 for control). Each replicate was carried out in a 30-L circular plastic tank based on 20 fingerlings. The study involved: the mortality estimation, the oxygen consumption, the histopathological effects on fish gills, and the activities of lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) in liver of fish exposed to sublethal concentrations (0.44, 0.22, 0.11, 0.06, and 0.03 g . L–1) of single SPF for eight weeks under laboratory conditions. Results. Acute concentrations of SPF had serious adverse effects on mortality, oxygen consumption and opercular ventilation rates of exposed fish. All variables showed a dose-dependency. A mean value of 96-h LC50 of the SPF to the test fish was calculated to be 3.76 g . L–1. At various acute concentrations, oedema and hyperplasia of gill lamellae were observed in exposed fish. Exposure of the fish to sublethal concentrations of the SPF resulted in reduction in the levels of lactate dehydrogenase and alcohol dehydrogenase activities in liver. Conclusion. Concentrations of SPF in natural water bodies are deleterious to aquatic fauna. With rapid global economic development and need for more food production, pollution from agricultural fertilizers remains a major threat to the aquatic ecosystem. Therefore it is ultimately important that a balance is struck between achieving economic excellence and environmental protection through good pollution management strategies.

Wydawca

-

Rocznik

Tom

39

Numer

2

Opis fizyczny

p.103-110,fig.,ref.

Twórcy

autor
  • Fisheries Research Unit, Department of Zoology, University of Jos, Jos, Nigeria
autor
autor
autor

Bibliografia

  • Anonymous 1989. Estimation of the acute lethal toxicity of pollutants to Marine fish and invertebrates. United Nations Environmental Programme (UNEP) Reference Methods for Marine Pollution Studies No. 43.
  • Anonymous 1995. Standard methods for the Examination of water and wastewater. American Public Health Association (APHA)/AWWA/WPCF, Washington DC.
  • Banerjee T.K. 2007. Histopathology of respiratory organs of certain air-breathing fishes of India. Fish Physiology and Biochemistry 33: 441–454. DOI: 10.1007/s10695-007-9170-5.
  • Banerjee T.K., Chandra S. 2005. Estimation of zinc chloride contamination by histopathological analysis of the respiratory organs of the air breathing ‘murrel’ Channa striata (Bloch, 1797) (Channiformes, Pisces). Veterinarski Arhiv 75: 253–263.
  • Baskaran P., Palanichamy S. 1990. Impact of agricultural (ammonium chloride) fertilizer on physiology and biochemistry of the fresh water teleost fish Oreochromis mossambicus. Journal of Ecobiology 2: 97–106.
  • Bergmeryer U.H. 1967. Methods of enzymatic analysis. Academic Press. New York.
  • Buck D., Wallington E.A. 1972. Some histological techniques applicable to fish tissues. Pp. 257–301. In: Maudeshy-Thomas B.E. (ed.) Disease of Fish. Proceeding of Symposium No. 30 Zoology Society of London. Academic Press and Zoological Society of London.
  • Burgett A.A., Wright C.D., Smith G.R., Fortune D.T., Johnson S.L. 2007. Impact of ammonium nitrate on wood frog (Rana sylvatica) tadpoles: Effects on survivorship and behavior. Herpetological Conservation and Biology 2: 29–34.
  • Ceron J.J., Sancho E., Ferrando M.D., Gutierrez C., Andreu E. 1997. Changes in carbohydrate metabolism in the eel, Anguilla anguilla, during short-term exposure to Diazinon. Toxicology and Environmental Chemistry 60: 201–210.
  • Das P.C., Ayyappan S., Jena J.K., Das B.K. 2004. Acute toxicity of ammonia and its sub-lethal effects on selected haematological and enzymatic parameters of mrigal, Cirrhinus mrigala (Hamilton). Aquaculture Research 35: 134–143. DOI: 10.1111/j.1365-2109.2004.00994.x.
  • Dwyer F.J., Hardesty D.K., Henke C.E., Ingersoll C.G., Whites D.W., Augspurger T., Canfield T.J., Mount D.R., Mayer F.L. 2005. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part III. Effluent toxicity tests. Archives of Environmental Contamination and Toxicology 48: 174–183. DOI: 10.1007/s00244-004-0104-2.
  • Fenn M.E., Baron J.S., Allen E.B., Rueth H.M., Nydick K.R., Geiser L., Bowman W.D., Sickman J.O., Meixner T., Johnson D.W., Neitlich P. 2003. Ecological effects of nitrogen deposition in the western United States. Bio Science 53: 404–420. DOI: 10.1641/0006-3568(2003)053[0404:EEONDI]2.0.CO;2.
  • Ferreira da Costa O.T., dos Santos Ferreira D.J., Presti Mendonça F.L., Fernandes M.N. 2004. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite. Aquaculture 232: 627–636. DOI: 10.1016/S0044-8486(03)00524-6.
  • Holland E.A., Braswell B.H., Sulzman J., Lamarque J.-F. 2005. Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecological Application 15: 38–57. DOI: 10.1890/03-5162.
  • Lusková V., Svoboda M., Kolářová J. 2002. The effect of Diazinon on blood plasma biochemistry in carp (Cyprinus carpio L.). Acta Veterinaria Brno 71: 117–123.
  • Omoregie E. 2002. Acute toxicity of water soluble fractions of crude oil to the Nile tilapia, Oreochromis niloticus (L.). Bulletin of Environmental Contamination and Toxicology 68: 623–629. DOI: 10.1007/s001280300.
  • Omoregie E., Okunsebor S.A. 2005. Levels of biochemical constituents of fish associated with water dispersed fractions of used automobile lubricants. Journal of Environmental Science and Health A 40: 156–166. DOI: 10.1081/ESE-200033673.
  • Omoregie E., Ufodike E.B.C. 1991. Histopathology of Oreochromis niloticus exposed to Actellic 25EC. Journal of Aquatic Sciences 6: 13–17.
  • Okwuosa V.N., Omoregie E. 1995. Acute toxicity of alkylbenzene sulphonate (ABS) detergent to the toothed carp, Aphyosemion gairdneri (L.). Aquaculture Research 26: 755–758. DOI: 10.1111/j.1365-2109.1995.tb00868.x.
  • Palanivelu V., Vijayavel K., Ezhilarasibalasubramanian S., Balasubramanian M.P. 2005. Impact of fertilizer (urea) on oxygen consumption and feeding energetics in the fresh water fish Oreochromis mossambicus. Environmental Toxicology and Pharmacology 19: 351–355. DOI: 10.1016/j.etap.2004.09.001.
  • Peuranen S., Vuorinen P.J., Vuorinen M., Hollender A. 1994. The effects of iron, humic acids and low pH on the gills and physiology of brown trout (Salmo trutta). Annales Zoologici Fennici 31: 389–396.
  • Rand G.M., Petrocelli S.M. 1985. Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, Washington DC.
  • Rani E.F., Elumalai M., Balasubramanian M.P. 1998. Toxic and sublethal effects of ammonium chloride on a freshwater fish Oreochromis mossambicus. Water, Air, and Soil Pollution 104: 1–8. DOI: 10.1023/A:1004941825193.
  • Svecevičius G. 2007. The use of fish avoidance response in identifying sublethal toxicity of heavy metals and their mixtures. Acta Zoologica Lituanica 17 (2): 139–143.
  • Svoboda M., Lusková V., Drastichová J., Žlabek V. 2001. The effect of Diazinon on haematological indices of common carp (Cyprinus carpio L.). Acta Veterinaria Brno 70: 457–465.
  • Tilman D., Fargione J., Wolff B., D’Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W.H., Simberloff D., Swackhamer D. 2001. Forecasting agriculturally driven global environment change. Science 292 (5515): 281–284. DOI: 10.1126/science.1057544.
  • Wedemeyer G. 1971. The stress of formalin treatments in rainbow trout (Salmon gairdneri) and coho salmon (Oncorhynchus kisutch). Journal of the Fisheries Research Board of Canada 28: 1899–1904.
  • Wedemeyer G., Yasutake W.T. 1974. Stress of formalin treatment in juvenile spring Chinook salmon (Oncorhynchus tshawytsha) and steelhead trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 31: 179–184.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7e6eed83-3901-4095-a637-e241af540ab1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.