PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 4 |

Tytuł artykułu

Molten globule as an intermediate on the human prostatic phosphatase folding pathway

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Human prostatic acid phosphatase (hPAP, EC.3.1.3.2), a secretory homodimeric protein was denatured in 6 M urea, pH 2.5, and refolded by dilution at pH 7.2 with recovery of the enzymatic activity and dimeric structure. Circular dichroism, intrinsic fluorescence and chromatographic analysis of renaturating protein suggested that the kinetic intermediate of the hPAP folding is a monomer which displays a molten globule state (R. Kuciel, A. Mazurkiewicz & W.S. Ostrowski, 1996, Int. J. Biol. Macromol. 18, 167-175). To confirm these data experiments were performed to estimate the interaction of the renaturating protein with dyes and amphipathic lipid structures. Increased binding of the hydrophobic probe 1-anilinonaphthalene-8-sulfonate and Congo Red to the refolding enzyme supported the existence of molten globule state with the relaxed beta-structure in the renaturating protein. Presence of liposomes, included in the renaturation mixture as a model of acid phospholipid, resulted in perturbations of the human PAP refolding process. Some folding intermediates were bound to phosphatidylserine liposomes or, alternatively, water soluble, inactive aggregates were formed.

Wydawca

-

Rocznik

Tom

44

Numer

4

Opis fizyczny

p.645-657,fig.

Twórcy

autor
  • Collegium Medicum, Jagiellonian University, M.Kopernika 7, 31-034 Cracow, Poland

Bibliografia

  • 1. Luchter-Wasyl, E. &Ostrowski, W.S. (1974) Subunit structure of human prostatic acid phosphatase. Biochim. Biophys. Acta 365, 349-359.
  • 2. Ostrowski, W., Bhargava, A.K.. Dziembor, E., Gizler, M., Gryszkiewicz, J. & Barnard, E.A. (1976) Acid phosphomonoesterase of human prostate. Carbohydrate content and optical properties. Biochim. Biophys. Ada 453, 262- 269.
  • 3. Risley, J.M. & Van Etten, R.L. (1987) Struc­ture of the carbohydrate moieties of human prostatic acid phosphatase elucidated by nu­clear magnetic resonance spectroscopy. Arch. Biochem. Biophys. 258, 404-412.
  • 4. Kuciel, R., Bakalova, A., Mazurkiewicz, A., Bilska, A. & Ostrowski, W.S. (1990) Is the subunit of prostatic phosphatase active? Re­versible denaturation of prostatic acid phos­phatase. Biochem. Int. 22, 329-334.
  • 5. Kuciel, R., Mazurkiewicz, A. & Ostrowski W.S. (1996) The folding intermediate of re- versibly denatured human prostatic acid phosphatase. Int. J. Biol. Macromol. 18, 167-175.
  • 6. Kuwajima, K. (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins Struct. Funct. Genet. 6, 87-103.
  • 7. Ptitsyn, O.B. (1994) Kinetic and equilibrium intermediates in protein folding. Protein Eng. 7, 593-596.
  • 8. Ohgushi, M. & Wada, A. (1983) Molten-glob­ule state: A compact form of globular proteins with mobile side-chains. FEBS Lett. 164, 21- 24.
  • 9. Semisotnow, G.V., Rodionova, N.A., Razgu- lyaev, O.I., Uversky, V.N., Gripas, A.F. & Gilmanshin, A. (1991) Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent prol>e. Biopo- lymers 31, 119-128.
  • 10. Piekarska, B., Roterman, I., Rybarska, J., Konieczny L. & Kaszuba. J. (1994) The melt­ing of native domain structure in effector activation of IgG studied by using Congo Red as a specific probe. J. Physiol. Pharm. 45, 147- 162.
  • 11. Piekarska, B., SkowTonek, M., Rybarska, J., Stopa, B., Roterman, I. & Konieczny, L. (1996) Congo Red stabilized intermediates in the X. light chain transition from native to molten state. Biochimie 78, 183-189.
  • 12. Roterman, I., No, K.T., Piekarska, B., Ka­szuba, J., Pawlicki, R., Rybarska, J. & Konieczny, L. (1993) Bis azo dyes — studies on the mechanism of complex formation with IgG modulated by heating or antigen binding. J. Physiol. Pharm. 144, 213-232.
  • 13. Van Etten, R. & Saini, M.S. (1978) Selective purification of tartrate inhibitable acid phos­phatases: Rapid and efficient purification (to homogeneity) of human and canine prostatic acid phosphatase. Clin. Chem. 24, 1525- 1530.
  • 14. Bobrzecka, K. Ostrowski, W. & Rybarska. J. (1968) The effect of iodination on the activity and structure of acid phosphomonoesterase from human prostate. Acta Biochim. Polon. 15, 369 -379.
  • 15. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227,680- 685.
  • 16. Lutz, R.A., Bull, Ch. & Rodbard, D. (1986) Computer analysis of enzyme-substrate-in­hibitor kinetics. Data with automatic model selection using IBM-PC Compatible Micro­computers. Enzyme 36, 197-206.
  • 17. Hope, M.J., Bally, M.B., Webb, G. & Cullis, P.R. (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Char­acterization of size distribution, trapped vol­ume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812,55-65.
  • 18. Ostrowski, W.S., Kuciel, R„ Tanaka, F. & Yagi, K. (1993) Fluorometric analysis of na­tive, urea-denatured and refolded human pro­static acid phosphatase. Biochim. Biophys. Acta 1164,319-326.
  • 19. Glenner, G.G. (1982) The relation of Congo Red stained amyloid fibrils to the ^-conforma­tion. J. Histochem. Cytochem. 20, 821-826.
  • 20. Schneider, G., Lindquist, Y. & Vihko, P. (1993) Three-dimensional structure of rat acid phosphatase. EM BO J. 12, 2609-2615.
  • 21. Jakob, C.G., Kuciel, R., Lewinski, K., Os- trowski, W.S. & Lebioda, L. (1995) Crystal structure of human prostatic acid phos­phatase at 3.1 À resolution. Am. Cryst. Asso­ciation Meeting, Montreal.
  • 22. Van Etten., R.L., Davidson, R., Stevis, P.E., MacArthur, M. & Moore, D.L. (1991)CovaIent structure, disulfide bonding, and identifica­tion of reactive surface and active site resi­dues of human prostatic acid phosphatase. J. Biol. Chem. 266, 2313-2319.
  • 23. Aumuller, G. & Adler. G. ( 1979) Experimental studies of apocrine secretion in the dorsal prostatic epithelium of the rat. Cell Tissue Res. 198, 145- 158.
  • 24. Flickinger, C.J. (1974) Protein secretion in the rat ventral prostate and the relation of Golgi vesicles, cisternae, and vacuoles, as studied by electron microscope radioautography. Anal. Rec. 180, 427-448.
  • 25. Van der Goot, F.G., Gonzales-Manas, J.M., Lakey, J.H. & Pattus, F. (1991) A "molten globule" membrane-insertion intermediate of the pore-forming domain of colicin A. Nature (London) 354,408-411.
  • 26. Banuelos, S. & Muga. A. (1995) Binding of molten globule-like conformations to lipid bi- layers. Structure of native and partially folded a-lactalbumin bound to model mem­branes. J. Biol. Chem. 270, 29910-29915.
  • 27. Schatz, G. & Dobberstein, B. (1996) Common principles of protein translocation across membranes. Science 271, 1519-1526.
  • 28. Fisher. G. & Schmid. F.X. (1990) The mecha­nism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochem­istry 29, 2205-2211.
  • 29. Laudry, S.J. & Gierash, L.M. (1991) Recogni­tion of nascent polypeptides for targeting and folding. Trens. Biochem. Sci. 16, 159-162.
  • 30. Zardeneta, G. & Horowitz, P.M. (1992) Micelle-assisted protein folding. J. Biol. Chem. 267, 5811-5816.
  • 31. Zardena, G. & Horowitz, P.M. (1994) Protein refolding at high concentrations using deter- gent/phospholipid mixtures. Anal. Biochem. 218, 392- 398.
  • 32. Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A. & Hartl, F.U. (1991) Chape- ronin-mediated protein folding at the surface of groEL through a "molten globule'Mike in­termediate. Nature (London) 352, 36-42.
  • 33. Mendoza, J.A., Rogers, E., Lorimer, G. & Horowitz, P.M. (1991) Chaperonins facilitate the in vitro folding of monomelic mitochon­drial rhodanase. J. Biol. Chem. 266, 13044- 13049.
  • 34. Buchner, J., Schmidt, M., Fucks, M., Jaenicke, R., Schmid. F.X. & Kicfhaber, T. (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Bio­chem istry 30, 1586-1591.
  • 35. Flynn, G.C., Beckers, C.J.M., Baase, W.A. & Dahlquist, F.W. (1993) Individual subunits of bacterial luciferase are molten globules and interact with molecular chaperones. Proc. Natl. Acad. Sci. U.S.A. 90, 10826-10830.
  • 36. Goloubinoff, P., Christeller, J.T., Gatenby, A. A. & Lorimer, G.H. (1989) Reconstitution of active dimeric ribulose bisphosphate carboxy­lase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature (London) 342, 884-889.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-784a6e02-e374-4d33-90fe-7cc79bb4604a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.