PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2008 | 53 | 3 |

Tytuł artykułu

Multiple paternity in a wild population of the yellow-necked mouse Apodemus flavicollis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Multiple paternity has been described in a wide range of taxonomic groups (eg invertebrates, fish, reptiles, birds, mammals). In rodents, multiple paternity seems to be common and can lead to both genetic (eg increase in offspring diversity, avoiding inbreeding) and direct (eg higher survival rate of the litter) benefits. The primary aim of this study was to confirm multiple paternity and evaluate its frequency in a wild population of yellow-necked mouseApodemus flavicollis (Melchior, 1834). Animals were trapped in north-eastern Poland in 2004–2006. Five microsatellite loci previously described for members of the genusApodemus were used to examine the occurrence of multiple paternity among the offspring of 10 pregnant females. The analyses were performed using multiplex PCR, estimating the length of amplified fragments with an automated sequencer. The presence of additional alleles indicating multiple paternity was found in 30% (3 out of 10) of the investigated litters. Offspring fathered by a single male were predominant in each litter, with the proportion of individuals originating from other males varying from 16.7 to 20% in the three multiple paternity cases. Our findings indicate that the promiscuous mating system may be considered as an alternative breeding strategy in the yellow-necked mouse.

Wydawca

-

Czasopismo

Rocznik

Tom

53

Numer

3

Opis fizyczny

p.251-258,fig.,ref.

Twórcy

  • University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
autor
autor
autor

Bibliografia

  • Baker R. J., Makova K. D. and Chesser R. K. 1999. Microsatellites indicate a high frequency of multiple paternity inApodemus (Rodentia). Molecular Ecology 8: 107–111.
  • Bartmann S. and Gerlach G. 2001. Multiple paternity and similar variance in reproductive success of male and female wood mice (Apodemus sylvaticus) housed in an enclosure. Ethology 107: 889–899.
  • Berteaux D., Běty J., Rengino E. and Bergeron J.-M. 1999. Multiple paternity of meadow voles (Microtus pennsylvanicus): investigating the role of the female. Behavioral Ecology and Sociobiology 45: 283–291.
  • Boonstra R., Xia X. and Pavone L. 1993. Mating system of the meadow vole,Microtus pennsylvanicus. Behavioral Ecology 4: 83–89.
  • Brown L. E. 1969. Field experiments on the movements ofApodemus sylvaticus L. using trapping and tracking techniques. Oecologia 2: 198–222.
  • Bryja J. and Stopka P. 2005. Facultative promiscuity in a presumably monogamous mouseApodemus microps. Acta Theriologica 50: 189–196.
  • Bujalska G. and Grüm L. 2005. Reproduction strategy in an island population of yellow-necked mice. Population Ecology 47: 151–154.
  • Fisher D. O., Double M. C., Blomberg S. P., Jennions M. D. and Cockburn A. 2006a. Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild. Nature 444: 89–92.
  • Fisher D. O., Double M. C. and Moore B. D. 2006b. Number of mates and timing of mating affect offspring growth in the small marsupialAntechinus agilis. Animal Behaviour 71: 289–297.
  • Getz L. L., MacGuire B., Hofmann J., Puzitto T. and Frase B. 1990. Social organization and mating system of the prairie vole,Microtus ochrogaster. [In: Social systems and population cycles in voles. R. H. Tamarin, R. S. Ostfeld, S. R. Pugh and G. Bujalska, eds]. Birkhäuser Verlag, Basel, Boston, Berlin: 69–87.
  • Gockel J., Harr B., Schlötterer C., Arnold W., Gerlach G. and Tautz D. 1997. Isolation and characterization of microsatellite loci fromApodemus flavicollis (Rodentia, Muridae) andMyodes glareolus (Rodentia, Cricetidae). Molecular Ecology 6: 597–599.
  • Hosken D. J. and Blanckenhorn W. U. 1999. Female multiple mating, inbreeding avoidance, and fitness: it is not only the magnitude of costs and benefits that counts. Behavioral Ecology 10: 462–464.
  • Jennions M. D. and Petrie M. 2000. Why do females mate multiply? A review of the genetic benefits. Biological Reviews 75: 21–64.
  • Klemme I., Eccard J. A., Gerlach G., Horne T. J. and Ylönen H. 2006. Does it pay to be a dominant male in a promiscuous species? Annales Zoologici Fennici 43: 248–257.
  • Kozakiewicz M., Chołuj A. and Kozakiewicz A. 2007. Long--distance movements of individuals in a free-living bank vole population: an important element of male breeding strategy. Acta Theriologica 52: 339–348.
  • Kozakiewicz M., Gortat T., Panagiotopoulou H., Gryczyńska--Siemiątkowska A., Rutkowski R., Kozakiewicz A., Abramowicz K. (in press). The spatial genetic structure of bank vole (Myodes glareolus) and yellow-necked mouse (Apodemus flavicollis) populations: the effect of distance and habitat barriers. Animal Biology.
  • Kozakiewicz M. and Kozakiewicz A. (in press). Long-term dynamics and biodiversity changes in small mammal communities in the mosaic of agricultural and forest habitats. Annales Zoologici Fennici.
  • Kraaijeveld-Smit F. J. L., Ward S. J., Temple-Smith P. D. and Paetkau D. 2002. Factors influencing paternity success inAntechinus agilis: last-male sperm precedence, timing of mating and genetic compatibility. Journal of Evolutionary Biology 15: 100–107.
  • Makova K. D., Patton J. C., Krysanov E. Y. U., Chesser R. K. and Baker R. J. 1998. Microsatellite markers in wood mouse and striped field mouse (genusApodemus). Molecular Ecology 7: 247–249.
  • Marshall T. C., Slate J., Kruk L. E. E. and Pemberton J. M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639–655.
  • Montgomery W. I. and Gurnell J. 1985. The behaviour ofApodemus. [In: The ecology of woodland rodents: bank voles and wood mice. J. R. Flowerdew, J. Gurnell and J. M. W. Gipps, eds]. Symposia of the Zoological Society of London 55: 89–115.
  • Ohnishi N., Ishibashi Y., Saitoh T., Abe S. and Yoshida M. C. 1998. Polymorphic microsatellite DNA markers in the Japanese wood mouseApodemus argenteus. Molecular Ecology 7: 1431–1432.
  • Ostfeld R. S., Pugh S. R., Seamon J. O. and Tamarin R. H. 1988. Space use and reproductive success in a population of meadow voles. Journal of Animal Ecology 57: 385–394.
  • Peakall R. and Smouse P. E. 2006. GENALEX 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.
  • Ratkiewicz M. and Borkowska A. 2000. Multiple paternity in the bank vole (Clethrionomys glareolus): field and experimental data. Zeitschrift für Säugetierkunde 65: 6–14.
  • Reynolds J. D. 1996. Animal breeding systems. Trends in Ecology & Evolution 11: 68–72.
  • Stanko M., Patzenhauerova H., Mosansky L. and Bryja J. 2007. Mating system variation in four European species ofApodemus mice. Hystrix. The Italian Journal of Mammalogy (n.s.) Supplement V European Congress of Mammalogy: 171.
  • Stradiotto A., Cagnacci F., Nieder L. and Rizzoli A. 2007. Sex-biased ranging behaviour of the yellow-necked mouseApodemus flavicollis at high population density. Hystrix. The Italian Journal of Mammalogy (n.s.) Supplement V European Congress of Mammalogy: 172.
  • Szacki J. 1999. Spatially structured populations: how much do they match the classic metapopulation concept? Landscape Ecology 14: 369–379.
  • Weir B. S. and Cockerham C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.
  • Wolff J. O. and Dunlap A. S. 2002. Multi-male mating, propability of conception, and litter size in the prairie vole (Microtus ochrogaster). Behavioural Processes 58: 105–110.
  • Wolff J. O. and Macdonald D. W. 2004. Promiscuous females protect their offspring. Trends in Ecology & Evolution 19: 127–134.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6586a64d-4cfd-43f8-99f8-356535686dc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.