PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 49 | 2 |

Tytuł artykułu

A new reconstruction of multituberculate endocranial casts and encephalization quotient of Kryptobaatar

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Multituberculate and eutriconodontan endocasts differ from those of primitive therian mammals in their lack of visible midbrain exposure on the dorsal side and in having a vermis−like triangular bulge (recognized herein as the cast of a large sinus—the superior cistern) inserted between the cerebral hemispheres. As the shape and proportions of multituberculate, eutriconodontan, and Cretaceous eutherian endocasts are otherwise similar, one might speculate that the multituberculate and eutriconodontan brains did not differ essentially from those of primitive eutherian and marsupial mammals, in which the midbrain is exposed dorsally. This conclusion might have important phylogenetic implications, as multituberculates and eutriconodontans may lay closer to the therians sensu strico, than hitherto believed. We describe an endocast of the Late Cretaceous multituberculate Kryptobaatar, which differs from those of other multituberculates (Ptilodus, Chulsanbaatar, and Nemegtbaatar) in having unusually long olfactory bulbs and the paraflocculi elongated transversely, rather than ball−shaped. We estimate the encephalization quotient (EQ) of Kryptobaatar, using: 1) Jerison’s classical equation (1) based on estimation of endocranial volume and body mass; 2) McDermott et al.’s derived body mass estimation equation (2) using upper molar lengths; and 3) estimation of body mass based on new equations (3a, 3b, 3c, and 3d₁₋₉), which we propose, using measurements of the humerus, radius, ulna, femur and tibia. In both Jerison’s method and a mean of our series of derived formulae, the EQ varies around 0.71, which is higher than estimated for other multituberculate mammals. It remains an open question whether the evolutionary success of Kryptobaatar(which was a dominant mammal during the ?early Campanian on the Gobi Desert and survived until the ?late Campanian) might have been related to its relatively high EQ and well developed sensorimotor adaptations, in particular olfaction and coordinated movements.

Wydawca

-

Rocznik

Tom

49

Numer

2

Opis fizyczny

p.177-188,fig.,ref.

Twórcy

  • Polish Acdemy of Sciences, Twarda 51-55, 00-818 Warsaw, Poland

Bibliografia

  • Alexander, R.McN., Jayes, A.S., Maloiy, G.M.O., and Wathuta, E.M. 1979. Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). Journal of Zoology, London 189: 305–314.
  • Altman, J. and Bayer, S. A. 1997. Development of the Cerebellar System: Its Relation to Its Evolution, Structure, and Functions. CRC Press, Boca Raton, Florida, New York, viii + 783pp.
  • Bauchot, R. and Stephan, H. 1967. Encéphales et moulages endocraniens de quelques insectivores et primates endocraniens. In: Problemes Actuels de Paléontologie (Evolution des Véertebrés). Colloques Internationaux du CNRS 163. Paris Editions du CNRS: 575–586.
  • Bloch, J.I., Rose, K.D., and Gingerich, P.D. 1998. New species of Batodonoides (Lipotyphla, Geolabididae) from the Early Eocene of Wyoming: Smallest known mammal? Journal of Mammalogy 79: 804–827.
  • Bonin, G., von, 1937. Brain−weight and body−weight of mammals. Journal of General Psychology 16: 379–389.
  • Christiansen, P. 1999. Long bone scaling and limb posture in non−avian theropods; evidence for differential allometry. Journal of Vertebrate Paleontology 19 (4): 666–680.
  • Crile, G. and Quiring, D.P. 1940. A record of the body weight and certain organ and gland weights of 3690 animals. The Ohio Journal of Science 40 (5): 219–259.
  • Damuth, J. and MacFadden, B.J. 1990. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. 397 pp. Cambridge University Press, Cambridge.
  • Dashzeveg, D., Novacek, M.J., Norell, M.A., Clark, J.M., Chiappe L.M., Davidson, A., McKenna, M.C., Dingus, L., Swisher, C., and Altangerel, P. 1995. Extraordinary preservation in a new vertebrate assemblage from the Late Cretaceous of Mongolia. Nature 374: 446–449.
  • Eisenberg, J.F. 1981. The Mammalian Radiations: An analysis of Trends in Evolution, Adaptation, and Behavior. 610 pp. The University of Chicago Press, Chicago.
  • Fleagle, J.G. 1985. Size and adaptation in primates. In: W.L. Jungers (ed.), Size and Scaling in Primate Biology, 1–19. Plenum Press. New York.
  • Fox, R.C. and Meng, J. 1997. An X−radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and evolution of hearing. Zoological Journal of the Linnean Society 121: 249–291.
  • Gambaryan, P.P. and Kielan−Jaworowska, Z. 1997. Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontologica Polonica 42: 13–44.
  • Gingerich, P.D. 1974. Dental function in the Paleocene primate Plesiadapis. In: R.D. Martin, G.A. Doyle, and A.C. Walker (eds.), Prosimian Biology, 531–541, University of Pittsburgh Press, Pittsburgh.
  • Gingerich, P.D. 1990. Prediction of body size in mammalian species from long bones lengths and diameters. Contributions from the Museum of Paleontology, the University of Michigan 28: 79–92.
  • Gingerich, P.D. and Smith, B.H. 1984. Allometric scaling in the dentition of primates and insectivores. In: W.L. Jungers (ed.), Size and Scaling in Primate Biology, 257–272. Plenum Press, New York.
  • Gingerich, P.D., Smith, B.H., and Rosenberg, K. 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils.American Journal of Physical Anthropology 58: 81–100.
  • Gordon, C.L. 2003. A first look at estimating body size in dentally conservative marsupials. Journal of Mammalian Evolution 10 (1/2): 1–21.
  • Granger, W. and Simpson, G.G. 1929. A revision of the Tertiary Multituberculata. Bulletin of the American Museum of Natural History 56: 601–676.
  • Griffiths, M. 1968. Echidnas. 282 pp. Pergamon Press, London.
  • Griffiths, M. 1978. The Biology of Monotremes. 367 pp. Academic Press, New York.
  • Hahn, G. 1969. Beiträge zur Fauna der Grube Guimarota Nr. 3. Die Multituberculata. Palaeontographica A 133: 1–100.
  • Hopkins, W.D. and Marino, L. 2000. Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI). Neuropsychologia 38 (4): 493–499.
  • Hurum, J.H. 1998. The inner ear of two Late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. Journal of Mammalian Evolution 5: 65–94.
  • Janis, C.M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodids. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology, 255–299. Cambridge University Press, Cambridge, England.
  • Jerison, H.J. 1973. Evolution of Brain and Intelligence. 482 pp. Academic Press, New York.
  • Kay, R.F. 1975. The functional adaptations of primate molar teeth. Journal of Physical Anthropology 43: 195–216.
  • Kielan−Jaworowska, Z. 1970. New Upper Cretaceous multituberculate genera from Bayn Dzak, Gobi Desert. In: Z. Kielan−Jaworowska (ed.), Results of the Polish−Mongolian Palaeontological Expeditions, pt. II. Palaeontologia Polonica 21: 35–49.
  • Kielan−Jaworowska, Z. 1974. Multituberculate succession in the Late Cretaceous of the Gobi Desert (Mongolia).In: Z. Kielan−Jaworowska (ed.), Results of the Polish−Mongolian Palaeontological Expeditions, pt. V. Palaeontologia Polonica 30: 23–44.
  • Kielan−Jaworowska, Z. 1980. Absence of ptilodontoidean multituberculates from Asia and its palaeogeographic implications. Lethaia 13: 169–173.
  • Kielan−Jaworowska, Z. 1983. Multituberculate endocranial casts. Palaeovertebrata 13: 1–12.
  • Kielan−Jaworowska, Z. 1984. Evolution of the therian mammals in the Late Cretaceous of Asia. Part VI. Endocranial casts of eutherian mammals. Palaeontologia Polonica 46: 157–171.
  • Kielan−Jaworowska, Z. 1986. Brain evolution in Mesozoic mammals. Contributions to Geology, University of Wyoming Special Paper 3: 21–34.
  • Kielan−Jaworowska, Z. 1997. Characters of multituberculates neglected in phylogenetic analyses of early mammals. Lethaia 29: 249–266.
  • Kielan−Jaworowska, Z. 1998. Humeral torsion in multituberculate mammals. Acta Palaeontologica Polonica 43: 131–134.
  • Kielan−Jaworowska, Z. and Dashzeveg, D. 1978. New Late Cretaceous locality in Mongolia and a description of a new multituberculate. Acta Palaeontologica Polonica 23: 115–130.
  • Kielan−Jaworowska, Z. and Gambaryan, P.P. 1994. Postcranial anatomy and habits of Asian multituberculate mammals. Fossils and Strata 36: 1–92.
  • Kielan−Jaworowska, Z. and Hurum, J.H. 1997. Djadochtatheria a new suborder of multituberculate mammals. Acta Palaeontologica Polonica 42: 201–242.
  • Kielan−Jaworowska, Z. and Hurum, J.H. 2001. Phylogeny and systematics of multituberculate mammals. Palaeontology 44: 389–429.
  • Kielan−Jaworowska, Z. and Qi, T. 1990. Fossorial adaptations of a taeniolabidoid multituberculate mammal from the Eocene of China. Vertebrata PalAsiatica 28: 83–94.
  • Kielan−Jaworowska, Z., Cifelli, R.L., and Luo, Z−X. (in press). Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press, New York.
  • Kielan−Jaworowska, Z., Hurum, J.H., and Badamgarav, D. 2003. An extended range of the multituberculate Kryptobaatar and the distribution of mammals in the Upper Cretaceous of the Gobi Desert. Acta Palaeontologica Polonica 48 (2): 273–278.
  • Kielan−Jaworowska, Z., Novacek, M.J., Trofimov, B.A., and Dashzeveg, D. 2000. Mammals from the Mesozoic of Mongolia. In: M.J. Benton, M.A. Shishkin, D.M. Unwin, and E.N. Kurochkin (eds.), The Age of Dinosaurs in Russia and Mongolia, 573–626. Cambridge University Press, Cambridge.
  • Kielan−Jaworowska, Z., Presley, R., and Poplin, C. 1986. The cranial vascular system in taeniolabidoid multituberculate mammals. Philosophical Transactions of the Royal Society of London B 313: 525–602.
  • Krause, W.D. and Jenkins, F.A., Jr. 1983. The postcranial skeleton of North American multituberculates. Bulletin of the Museum of Comparative Zoology 150: 199–246.
  • Krause, W.D. and Kielan−Jaworowska, Z. 1993. The endocranial cast and encephalization quotient of Ptilodus (Multituberculata, Mammalia). Palaeovertebrata 22: 99–112.
  • Martin, R.A. 1992. Generic species richness and body mass in North American mammals; support for the inverse relationship of body size and speciation rate. Historical Biology 6 (3): 73–90.
  • McDermott, B., Hunter, R.J., and Alroy, J. 2002. Estimating body mass of multituberculate mammals. Journal of Vertebrate Paleontology 22 (Supplement to No. 3), Abstracts: 86A.
  • Miao, D. 1988. Skull morphology of Lambdopsalis bulla (Mammalia, Multituberculata) and its implications to mammalian evolution. Contributions to Geology, University of Wyoming, Special Paper 4: 1–104.
  • Netter, Frank, H. 1983. The Ciba Collection of Medical Illustrations, Volume 1, Nervous System, Part I, Anatomy and Physiology. xvi + 239 pp. CIBA Pharmaceutical Company, Summit, N.J., USA.
  • Pilleri, G. 1959. Beitrage zur vergleichenden Morphologie des Nagetiergehirnes. Acta Anatomica 39 (Supplement): 1–34.
  • Reynolds, P.S. 2002. How big is giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy 83: 321–332.
  • Rougier, G.W., Wible, J.R., and Hopson, J. 1992. Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. Journal of Vertebrate Paleontology 12: 188–216.
  • Rougier, G.W., Wible, J.R., and Novacek, M.J. 1996. Middle−ear ossicles of the multituberculate Kryptobaatar from the Mongolian Late Cretaceous: implications for mammaliamorph relationships and the evolution of the auditory apparatus. American Museum Novitates 3187: 1–43.
  • Sánchez−Villagra. 2002. The cerebeller paraflocculus and the subarcuate fossa in Monodelphis domestica and other marsupial mammals—ontogeny and phylogeny of a brain−skull interaction. Acta Theriologica 47 (1): 1–14.
  • Saysette, J.E. 1999. Postcranial estimators of body mass in pecoran artiodactyls. Journal of Vertebrate Paleontology 19 (Supplement to No. 3), Abstracts: A73.
  • Schaller, O. (ed.) 1992.Illustrated Veterinary Anatomy Nomenclature. 614 pp. Ferdinand Enke Verlag, Stuttgart.
  • Schmidt−Nielsen, K. 1984. Scaling: Why is Animal Size so Important. 241 pp. Cambridge University Press, New York.
  • Sereno, P. (in press). Shoulder girdle and forelimb in multituberculates: Evolution of parasagittal forelimb posture in mammals. In: M.T. Carrano, R.W., Blob, T.J., Gaudin, and J.R. Wible (eds.), Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. University of Chicago Press, Chicago.
  • Sereno, P. and McKenna, M.C. 1995. Cretaceous multituberculate skeleton and the early evolution of the mammalian shoulder girdle. Nature 377: 144–147.
  • Silva, M. and Downing, J.A. 1995. CRC Handbook of Mammalian Body Masses. 359 pp. CRC Press, Boca Raton.
  • Simpson, G.G. 1927. Mesozoic Mammalia, IX. The brain of Jurassic mammals. American Journal of Science 14: 259–268.
  • Simpson, G.G. 1937. Skull structure of the Multituberculata. Bulletin of the American Museum of Natural History 73: 727–763.
  • Smith, T., Guo, D.−Y., and Sun, Y. 2001. A new species of Kryptobaatar (Multituberculata): the first Late Cretaceous mammal from Inner Mongolia (P.R. China). Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre (Supplement 71): 29–50.
  • Sokal, R.R. and Rohlf, F.J. 1995. Biometry, 3rd edition. 887 pp. W.H. Freeman and Company, New York.
  • Thewissen, J.G.M. and Gingerich, P.D. 1989. Skull and endocranial cast of Eoryctes melanus, a new palaeoryctid (Mammalia, Insectivora) from the early Eocene of western North America. Journal of Vertebrate Paleontology 9: 459–470.
  • Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 181–205. Cambridge University Press, Cambridge, England.
  • Wible, J.R. and Rougier, G. 2000. The cranial anatomy of Kryptobaatar dashzevegi (Mammalia, Multituberculata), and its bearing on the evolution of mammalian characters. Bulletin of the American Museum of Natural History 247: 1–124.
  • Wood, B.A. 1979. An analysis of tooth and body size relationships in five primate taxa. Folia Primatologica 31: 187–211.
  • Wood, C.B. and Clemens, W.A. 2001. A new specimen and a functional reassociation of the molar dentition of Batodon tenuis (Placentalia, incertae sedis). Latest Cretaceous (Lancian), North America. In: F.A. Jenkins, Jr., T. Owerkowicz, and M.D. Shapiro (eds.), Studies in Organismic and Evolutionary Biology in Honor of A.W. Crompton. Bulletin of the Museum of Comparative Zoology 156: 99–118.
  • Zar, J.H. 1999. Biostatistical Analysis, 4 edition. 928 pp. Prentice Hall, Upper Saddle River, New Jersey.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6581aaf5-5af0-4043-b22c-23bfbfcb2cb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.