PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 53 | 4 |

Tytuł artykułu

Mechanism of vancomycin resistance in methicillin resistant Staphylococcus aureus

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A collection of laboratory mutants and clinical MRSA strains, additionally exhibiting resistance to glycopeptide antibiotics, was studied in detail. The nature of resistance to glycopeptides was found to be different from that existing in vancomycin resistant (VR) enterococci. The mutants produced abnormal murein in which the level of highly oligomeric muropeptides was drastically reduced. Biochemical and genetic analyses of Penicillin Binding Proteins (PBPs) showed inactivation of PBP4. Changes in other PBPs were not apparent, except for PBP2a that was inactivated in the highly VR mutant VM. Transposon inactivation of the pbpB gene and several other genes involved in synthesis of staphylococcal peptidoglycan all caused dramatic reduction of glycopeptide resistance in the staphylococcal mutants. While inactivation of PBP2a slightly increased the levels of glycopeptide resistance, a combination of vancomycin or teicoplanin with β-lactam inhibitors, chosen on the basis of their relatively selective affinities for individual staphylococcal PBPs completely inhibited the expression of glycopeptide resistance in MRSA. Glycopeptide antibiotics caused a virtually complete inhibition of cell wall turnover and autolysis and massive overgrowth of cell wall material in the glycopeptide resistant mutants. Bacteria were able to remove quantitatively glycopeptide molecules from the growth medium, and sequestered antibiotic could be recovered in biologically active form from the purified cell walls. These observations and the results of the vancomycin binding studies suggest alterations in the structural organization of the mutants' cell wall such that access of glycopeptide molecules to the sites of wall biosynthesis is blocked by steric hindrance.

Wydawca

-

Rocznik

Tom

53

Numer

4

Opis fizyczny

p.207-214,fig.,ref.

Twórcy

autor
  • Rockefeller University, 1230 York Ave, 10021 New York, NY, USA

Bibliografia

  • Beauregard D.A., D.H. Williams, M.N. Gwynn and D.J.C. Knowles. 1995. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob. Agents Chemother. 39: 781-785.
  • Chang S., D.M. Sievert, J.C. Hageman, M.L. Boulton, F.C. Tenover, F.P. Downes, S. Shah, J.T. Rudrik, G.R. Pupp, W.J. Brown, D. Cardo, S.K. Fridkin and Vancomycin-Resistant Staphylococcus aureus Investigative Team. 2003. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348: 1342-1347.
  • Cooper M.A. and D.H. Williams. 1999. Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. Chem. Biol. 6: 891-899.
  • Curtis N.A.C., M.V. Hayes, A.W. Wyke and J.B. Ward. 1980. A mutant of Staphylococcus aureus H lacking penicillin-binding protein 4 and transpeptidase activity in vitro. FEMSMicrobiol. Lett. 9: 263-266.
  • de Lencastre H., B.L.M. de Jonge, P.R. Matthews and A. Tomasz. 1994. Molecular aspects of methicillin resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 33: 7-24.
  • de Lencastre H., E.P. Severina, R.B. Roberts, B.N. Kreiswirth and A. Tomasz. 1996. Testing the efficacy of a molecular surveillance network: methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Entero-coccus faecium (VREF) genotypes in six hospitals in the metropolitan New York City area. Microb. Drug Resist. 2: 343-351.
  • Domanski T.L., B.L.M. de Jonge and K.W. Bayles. 1997. Transcription analysis of the Staphylococcus aureus gene encoding penicillin-binding protein 4. J. Bacteriol. 179: 2651-2657.
  • Ghuysen J.-M. 1991. Serine β -lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37-67.
  • Groves P., M.S. Searle, J.P. Mackay and D.H. Williams. 1994. The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics. Structure 2: 747-754.
  • Henze U.U., M. Roos and B. Berger-Bächi. 1996. Effects of penicillin-binding protein 4 overproduction in Staphylococcus aureus. Microb. Drug Resist. 2: 193-199.
  • Kloszewska M. and Z. Markiewicz. 1999. Bacterial resistance to vancomycin and other glycopeptide antibiotics - an emerging threat (in Polish). Post. Biochem. 45: 122-136.
  • Komatsuzawa H., M. Sugai, K. Ohta, T. Fujiwara, S. Nakashima, J. Suzuki, C.Y. Lee and H. Suginaka. Cloning and characterization of the fmt gene, which affects the methicillin resistance level and autolysis in the presence of Triton X-100 in methicillin resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 41: 2355-2361.
  • Leclercq R., E. Derlot, J. Duval and P. Courvalin. 1988. Plasmid - mediated resistance to vancomycin and teicoplanin in E. faecium. N. Engl. J. Med. 319: 157-161.
  • Mackay LP, U. Gerhard and D.A. Beauregard. 1994. Glycopeptide antibiotic activity and the possible role of dimerization: a model for biological signaling. J. Am. Chem. Soc. 116: 4581-4590.
  • Markiewicz Z. and Z. Kwiatkowski. 2001. Bacteria, Antibiotics, Drug Resistance. Polish Scientific Publishers PWN. Warsaw.
  • Moreillon P., Z. Markiewicz, S. Nachman and A. Tomasz. 1990. Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob. Agents Chemother. 34: 33-39.
  • Murakami K., T. Fujimura and M. Doi. 1994. Nucleotide sequence of the structural gene for the penicillin-binding protein 2 of Staphylococcus aureus and the presence of a homologous gene in other staphylococci. FEMS Microbiol. Lett. 117: 131-136.
  • Noble W.C., Z. Virani and R.G.A. Cree. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93: 195-198.
  • Roberts R.B., A. de Lencastre, W. Eisner, E.P. Severina, B. Shopsin, B.N. Kreiswirth and A. Tomasz. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in twelve New York hospitals. J. Infect. Dis. 178: 164-171.
  • Sanyal D. and D. Greenwood. 1993. An electronmicroscope study of glycopeptide resistant strains of Staphylococcus epidermidis. J. Med. Microbiol. 39: 204-210.
  • Scherrer R. and P. Gerhardt. 1971. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 107: 718-735.
  • Sieradzki K. and A. Tomasz. 1996. A highly vancomycin-resistant laboratory mutant of Staphylococcus aureus. FEMS Microbiol. Lett. 142: 161-166.
  • Sieradzki K. and A. Tomasz. 1997. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin resistant mutant of Staphylococcus aureus. J. Bacteriol. 179: 2557-2566.
  • Sieradzki K. and A. Tomasz. 1998. Suppression of glycopeptide resistance in highly teicoplanin resistant mutant of Staphylococcus aureus by transposon inactivation of genes involved in cell wall synthesis. Microb. Drug Resist. 4: 159-168.
  • Sieradzki K., R.B. Roberts, D. Serur, J. Hargrave and A. Tomasz. 1998a. Recurrent peritonitis in a patient on dialysis and prophylactic vancomycin. Lancet. 351: 880-881.
  • Sieradzki K., P. Villari and A. Tomasz. 1998b. Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrob. Agents Chemother. 42: 100-107.
  • Sieradzki K. and A. Tomasz. 1999. Gradual alterations in cell wall structure and metabolism in vancomycin-resistant mutants of Staphylococcus aureus. J. Bacteriol. 181: 7566-7570.
  • Sieradzki K., S.W. Wu and A. Tomasz. 1999. Inactivation of the methicillin resistance gene mecA in vancomycin-resistant Staphylococcus aureus. Microb. Drug Resist. 5: 253-257.
  • Sieradzki K., M.G. Pinho and A. Tomasz. 1999a. Inactivated pbp4 in highly glycopeptide resistant laboratory mutants of Staphylococcus aureus. J. Biol. Chem. 274: 18942-18946.
  • Sieradzki K., R.B. Roberts, S.W. Haber and A. Tomasz. 1999b. Emergence of vancomycin resistance in a methicillin-resistant clinical isolate of Staphylococcus aureus associated with vancomycin therapy. N. Engl. J. Med. 340: 517-523.
  • Sieradzki K. 2003. The molecular basis and clinical implications of simultaneous resistance to methicillin and glycopeptide antibiotics in Staphylococcus aureus. Ph.D. Thesis. Warsaw University, Warsaw, Poland.
  • Sieradzki K. and A. Tomasz. 2003. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J. Bacteriol. 185: 7103-7110.
  • Sieradzki K., T. Leski, J. Dick, L. Borio and A. Tomasz. 2003 Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J. Clin. Microbiol. 41:1687-1693.
  • Snowden M.A. and H.R. Perkins. 1990. Peptidoglycan cross-linking in Staphylococcus aureus. An apparent random polymerisation process. Eur. J. Biochem. 191: 373-377.
  • Wecke L, K. Madela and W. Fischer. 1997. The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143: 2953-2960.
  • Wyke A.W., LB. Ward, M.V. Hayes and N.A.C. Curtis. 1981. A role in vivo for penicillin-binding protein 4 of Staphylococcus aureus. Eur. J. Biochem. 119: 389-393.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6119b671-c591-47ce-90d6-98785dc8e3b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.