PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 44 |

Tytuł artykułu

Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on calamine spoils [S.Poland]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Two plant species growing on calamine spoils (vicinity of Olkusz, S. Poland) were examined for their ability to accumulate metals. The plants in these pilot studies were Biscutella laevigata L., a rare plant that occurs in lowlands on zinc-lead mine spoils only in the vicinity of Olkusz, and Plantago lanceolata L. which is a common species in Poland. Concentrations of alkaline metals (Ca, K, Mg) and heavy metals (Cd, Fe, Mn, Pb, Zn) in soil and plants (shoots, roots) from two locations of calamine spoils 100 and 30 years old and control areas were determined. Soils from the mine spoils were alkaline (pH >7.4), with large concentrations of Ca and Mg. Concentrations of Cd, Pb and Zn in soil were up to 224 mg kg-1 3100 mg kg-1 and 78,000 mg kg-1, respectively. The amounts of exchangeable metals (1 M NH4NO3) were up to 9.51 mg kg-1 Cd, < mg kg-1 Pb, and 24.5 mg kg-1 Zn. Concentrations of heavy metals in plants from the calamine spoils and their distribution within plants depended on the species. B. laevigata accumulated heavy metals in roots (Cd) or shoots (Fe, Mn, Zn). P. lanceolata accumulated heavy metals mainly in roots. Maximum concentrations in roots and shoots of B. laevigata were 14.3 mg kg-1 Cd, 111 mg kg-1 Pb and 410 mg kg-1 Zn. P. lanceolata contained up to 65.6 mg kg-1 Cd, 157 mg kg-1 Pb and 2540 mg kg-1 Zn. Our data suggest that both species tend to exclude Cd, and P. lanceolata also Zn, present in large concentrations in the soil.

Wydawca

-

Rocznik

Tom

44

Opis fizyczny

p.29-38,fig.,ref.

Twórcy

  • Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland
autor

Bibliografia

  • Baker AJM. 1981. Accumulators and excluders - strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3: 643-654.
  • Balsberg-Påhlsson A-M. 1989. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution 47: 287-319.
  • Barman SC, and Bhargava SK. 1997. Accumulation of heavy metals in soil and plants in industrially polluted fields. In: Cheremisinoff PN [ed.], Ecological issues and environmental impact assessment, 289-314. Gulf Publishing Company, Houston, Texas.
  • Baroni F, Boscagli A, Protano G, and Riccobono F. 2000. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution 109: 347-352.
  • Birkit DR. 1987. Statistics today. A comprehensive introduction. The Benjamin/Cummings Publishing Company Inc., Menlo Park, Amsterdam, San Juan.
  • Boardman R, and McGuire DO. 1990. The role of zinc in forestry. I. Zinc in forest environments, ecosystems and tree nutrition. Forest Ecology and Management 37: 167-205.
  • Cape NJ, Freer-Smith PH, Paterson IS, Parkinson JA, and Wolfenden J. 1990. The nutritional status of Picea abies (L.) Karst, across Europe, and implications for ‘forest decline’. Trees 4: 211-224.
  • Czarnowska K. 1996. Ogólna zawartość metali ciężkich w skałach macierzystych jako tło geochemiczne. Roczniki Gleboznawcze 67: 43-50.
  • Dobrzańska J. 1955. Badania florystyczno-ekologiczne nad roślinnością galmanową okolic Bolesławia i Olkusza. Acta Societatis Botanicorum Poloniae 24: 357-408.
  • Dudka S, Piotrowska M, Chłopecka A, and Witek T. 1995. Trace element contamination of soils and crop plants by mining and smelting industry in Upper Silesia, South Poland. Journal of Geochemical Exploration 52: 237-250.
  • FAO 1988. Soil Map of the World. World Soil Resources Report 60. FAO, Rome.
  • Gasser M. 1986. Genetic-ecological investigations in Biscutella levigata L. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich.
  • Grodzińska K, Korzeniak U, Szarek-Łukaszewska G, and Godzik B. 2000. Colonization of zinc mine spoils in Southern Poland - preliminary studies on vegetation, seed rain and seed bank. Fragmenta Floristica Geobotánica 45: 123-145.
  • Gupta SK. 1993. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. International Journal of Environmental Analytical Chemistry 51: 25-46.
  • Kabata-Pendias A, and Pendías P. 1993. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa.
  • Knox AS, GamerdingerAP, Adriano DC, Kolka RK, and Kaplan DI. 1999. Sources and practices contributing to soil contamination. Agronomy Monograph 37: 53-87.
  • Konstantinou M, and Babalonas D. 1996. Metal uptake by Caryophyllaceae species from metalliferous soils in northern Greece. Plant Systematics and Evolution 203:1-10.
  • Likens GE, Driscoll CT, Bruso DC, Siccawa TG, and Johnson CE. 1994. The biogeochemistry of potassium of Hubbard Brook. Biogeochemistry 25: 61-125.
  • Lin WU, and Antonovics J. 1976. Experimental ecological genetics in Plantago II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from a roadside. Ecology 57: 205-208.
  • Lis J, and Pasieczna A. 1995. Atlas geochemiczny Polski. PIG, Warszawa.
  • Molenda D. 1963. Górnictwo kruszcowe na terenie złóż Śląsko- Krakowskich do połowy XVI wieku. Studia i materiały z historii kultury materialnej. Tom XV. Zakład Narodowy im. Ossolińskich Wydawnictwo PAN.
  • Orłowska E., Zubek S, Jurkiewicz A, Szarek-Łukaszewska G, and Turnau K. Influence of restoration on arbuscular mycorrhiza of Biscutell laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza (in press).
  • Pawłowska J. [ed.]. 1977. Charakterystyka rud cynku i ołowiu na obszarze Śląsko-Krakowskim. Wydawnictwo Geologiczne, Warszawa.
  • Reference materials. 1992. Commission of the European Communities. Community Bureau of Reference, Brussels.
  • Pinta M. 1977. Absorpcyjna spectrofotometria atomowa. Zastosowanie w analizie chemicznej. PWN, Warszawa.
  • Rieuwerts JS, Thornton I, Farago ME, and Ashmore MR. 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability 10: 61-75.
  • Rostański A. 1987. Zawartość metali ciężkich w glebie i roślinach z otoczenia niektórych emitorów zanieczyszczeń na Górnym Śląsku. Archiwum Ochrony Środowiska 23: 181-189.
  • Skalińska M. 1949/1950. Studies in chromosome numbers of Polish Angiosperm. Acta Societatis Botanicorum Poloniae 20: 45-68.
  • Skiba S. 1983. Tendencje do strefowości rędzin tatrzańskich na przykładzie gleb stoków Kominiarskiego Wierchu. Roczniki Gleboznawcze 32: 101-112.
  • Streit B, and Stumm W. 1993. Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In: Markert B [ed.], Plants as biomonitors. Indicators for heavy metals in the terrestrial environment, 32-62. VCH, Weinheim-Cambridge.
  • Szafer W, and Zarzycki K [ed.]. 1972. Szata roślinna Polski T.1. PWN, Warszawa.
  • Thoming J, and Calvano W. 1998. Applicability of a single and sequential extractions for assessing the potential mobility of heavy metals in contaminated soils. Acta Hydrochimica et Hydrobiologica 26: 338-343.
  • Wenzel WW, and Jockwer F. 1999. Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environmental Pollution 104: 145-155.
  • Xian X, and Shokohiford GI. 1989. Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water, Air and Soil Pollution 45: 265-273.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-60ab1e91-bb04-47f8-91a4-fe4ffaf976ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.