PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 54 | 3 |

Tytuł artykułu

Antler mineral composition of Iberian red deer Cervus elaphus hispanicus is related to mineral profile of diet

Języki publikacji

EN

Abstrakty

EN
Previous studies have suggested that antlers are costly bone structures whose mineral composition may change depending on physiological and other factors. This study examined whether nutrition variation associated with deer management influences antler mineral composition and structural characteristics of whole antler. Mineral distribution and bone structure were examined in antlers from two groups of adult Iberian red deer Cervus elaphus hispanicus Hilzheimer, 1909. They were kept under different feeding regimes at an experimental deer farm and a game estate in southeastern Spain. Protein and mineral contents differed between the diet of captive deer and that of deer in the wild. Significant differences were found for Na, Mg, K and protein. Antler composition seems to reflect the diet, as antlers of deer differed in protein, Na, Mg and K, but not in total mineral content, Ca, Fe or Zn. Thus, management conditions related to nutrition are reflected on antler composition.

Wydawca

-

Czasopismo

Rocznik

Tom

54

Numer

3

Opis fizyczny

p.235-242,fig.,ref.

Twórcy

  • Instituto de Investigacion en Recursos Cinegeticos, IREC [CSIC, UCLM, JCCM], 02071 Albacete, Spain
autor
autor
autor
autor
autor

Bibliografia

  • AOAC 1985. Official methods of analysis. 14th edition. Association of Official Analytical Chemists, Washington: 1–1298.
  • ASAB 2006. Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour 71: 245–253.
  • Barling P. M., Gupta D. K. and Lim C. E. L. 1999. Involvement of phosphodiesterase I in mineralization: histochemical studies using antler from red deer (Cervus elaphus) as a model. Calcified Tissue International 65: 384–389.
  • Blaxter K. L., Kay R. N. B., Sharman G. A. M., Cunningham J. M. M., Eadie J. and Hamilton W. J. 1988. Farming the red deer. Department of Agriculture and Fishery of Scotland, HMSO, Edinburgh: 1–93.
  • Brelurut A., Pingard A. and Thériez M. 1990. Le cerf et son élevage. INRA, Paris: 1–143.
  • Bubenik G. A., Sempere A. J. and Hamr J. 1987. Developing antler, a model for endocrine regulation of bone growth. Concentration gradient of T3, T4, and alkaline phosphatise in the antler, jugular, and the saphenous veins. Calcified Tissue International 41: 38–43.
  • Ceacero F., Landete-Castillejos T., García A. J., Estévez J. A., Martínez A., Calatayud A., Gaspar-López E. and Gallego L. 2009. Free-choice mineral consumption in Iberian red deer (Cervus elaphus hispanicus) response to diet deficiencies. Livestock Science 122: 345–348.
  • Currey J. D. 2002. Bones: structure and mechanics. Princeton University Press, Princeton, New Jersey 1–456.
  • Denton D. A. 1967. Salt appetite, Handbook of Physiology 1. American Physiological Society, Washington: 1–433.
  • Dobrowolska A. 2002. Chemical composition of the red deer (Cervus elaphus) antlers, with a particular referente to the toxic metal contents. Zeitschrift für Jagdwissenschaft 48: 148–155.
  • Estevez J. A., Landete-Castillejos T., García A. J., Ceacero F. and Gallego L. 2008. Population management and bone structural effects in composition and radio-opacity of Iberian red deer (Cervus elaphus hispanicus) antlers. European Journal of Wildlife Research 54: 215–223.
  • Gallego L., Landete-Castillejos T., Garcia A. and Sánchez P. J. 2006. Seasonal efects and lactational changes in mineral composition of milk from Iberian red deer (Cervus elaphus hispanicus). Journal of Dairy Science 89: 589–595.
  • Gaspar-López E., Landete-Castillejos T., Estevez J. A., Ceacero F., Gallego L. and García A. J. 2009. Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus). Reproduction in Domestic Animals. DOI: 10.1111/j.1439-0531. 2008.01271.x.
  • Goss R. J. 1983. Deer antlers: regeneration, function and evolution. Academic Press, New York: 1–316.
  • Groot Bruinderink W. T. A., Lammertsma D. R. and Hazebroek E. 2000. Effects of cessation of supplemental feeding on mineral status of red deer Cervus elaphus and wild boar Sus scrofa in the Netherlands. Acta Theriologica 45: 71–85.
  • Grunes D. L. and Welch R. M. 1989. Plant contents of magnesium, calcium and potassium in relation to ruminant nutrition. Journal of Animal Science 67: 3485–3494.
  • Harvey P. H. and Bradbury J. W. 1991. Sexual Selection. [In: Behavioural ecology: an evolutionary approach. J. R. Krebs and N. B. Davies, eds]. Blackwell Scientific, Oxford: 203–233.
  • Hellgren E. C. and Pitts W. J. 1997. Sodium economy in white-tailed deer (Odoicoleus virginianus). Physiological and Biochemical Zoology 70: 547–555.
  • Hinders R. G., Vidacs G. and Ward G. M. 1961. Effects of feeding dehydrated alfalfa pellets as the only roughage to dairy cows. Journal of Dairy Science 44: 1178.
  • Huxley J. S. 1931. The relative size of antlers in deer. Proceedings of the Zoological Society of London 72: 819–864.
  • Landete-Castillejos T., Garcia A. and Gallego L. 2007a. Body weight, early growth and antler size influence antler bone mineral composition of Iberian Red deer (Cervus elaphus hispanicus). Bone 40: 230–235.
  • Landete-Castillejos T., Estevez J. A., Martínez A., Ceacero F., García A. J. and Gallego L. 2007b. Does chemical composition of antler bone reflect the physiological effort made to grow it? Bone 40: 1095–1102.
  • Landete-Castillejos T., Currey J. D., Estevez J. A., Gaspar-López E., García J. A. and Gallego L. 2007c. Influence of physiological effort of growth and chemical composition on antler bone mechanical properties. Bone 41: 794–803.
  • McDowell L. R. 2003. Minerals in animal and human nutrition. Elsevier, Amsterdam: 1–644.
  • McNaughton S. J. 1988. Mineral nutrition and spatial concentrations of African ungulates. Nature 334: 343–345.
  • McNaughton S. J. 1990. Mineral nutrition and seasonal movements of African migratory ungulates. Nature 345: 613–615.
  • Miller K. V., Marchinton R. L., Beckwith J. R. and Busy P. B. 1985. Variations in density and chemical composition of white-tailed deer antlers. Journal of Mammalogy 66: 693–701.
  • Miyaji F., Kono Y. and Suyama Y. 2005. Formation and structure of zinc-substituted calcium hydroxyapatite. Materials Research Bulletin 40: 209–220.
  • Muir P. D., Sykes A. R. and Barrell G. K. 1987. Calcium metabolism in red deer (Cervus elaphus) offered herbages during antlerogenesis: kinetic and stable balance studies. Journal of Agricultural Science 109: 357–364.
  • Pathak N. N., Pattanaik A. K., Patra R. C. and Arora B. M. 2001. Mineral composition of antlers of three deer species reared in captivity. Small Ruminant Research 42: 61–65.
  • Reffitt D. M., Ogston N., Jugdaohsingh R., Cheung H. F. J., Evans B. A. J., Thompson R. P. H., Powell J. J. and Hampson G. N. 2003. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32: 127–135.
  • Rolf H. J. and Enderle A. 1999. Hard fallow deer antler: a living bone till antler casting? Anatomical Record 255: 69–77.
  • Wallis de Vries M. F. 1996. Nutritional limitations of freeranging cattle: the importance of habitat quality. Journal of Applied Ecology 33: 688–702.
  • Wallis de Vries M. F. and Schippers P. 1994. Foraging in a landscape mosaic: selection for energy and minerals in free-ranging cattle. Oecologia 100: 107–117.
  • Ward G. M. 1966. Potassium metabolism of domestic ruminants: a review. Journal of Dairy Science 49: 268.
  • Wika M. 1982. Antlers — a mineral source in Rangifer. Acta Zoologica 63: 7–10.

Identyfikator YADDA

bwmeta1.element.agro-article-6070faff-3b19-4c5e-ba18-629b78955ced