PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 4A |

Tytuł artykułu

A characterization of the activities of iron regulatory protein 1 in various farm animal species

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Iron regulatory protein 1 (IRP1) post-transcriptionally regulates the expression of proteins involved in the iron metabolism of mammals. IRP1 is a bifunctional cytosolic protein which can exhibit aconitase activity or bind to iron responsive element (IREs) in the untranslated regions of specific mRNAs. The modulation of IRP1 activities and its consequence for intracellular iron homeostasis is best characterized in rodents and humans. Little is known about IRP1 in farm animals. In this study, we analyzed the two activities of IRP1 in the livers of four farm animal species (cattle, goat, pig and rabbit) and their relationship to hepatic iron content. We found an inverse correlation between spontaneous IRP1 IRE binding activity and non-haem iron content in the liver. Using the electrophoretic mobility shift assay, we showed differential mobility of IRE/IRP1 complexes formed with hepatic cytosolic extracts from various farm animal species. We discuss this observation in relation to a comparative analysis of mammalian IRP1 amino acid sequences.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

09

Numer

4A

Opis fizyczny

p.651-664,fig.,ref.

Twórcy

  • Polish Academy of Sciences, Jastrzebiec, Poland
autor
autor
autor

Bibliografia

  • 1. Rouault, T.A. Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cell. Mol. Dis. 29 (2002) 309-314.
  • 2. Henderson, B.R., Seiser, C. and Kühn, L.C. Characterization of a second RNA-binding protein in rodents with specificity for iron-responsive elements. J. Biol. Chem. 268 (1993) 27327-27334.
  • 3. Iwai, K., Drake, S.K., Wer, N.B., Weissman, A.M., LaVaute, T., Minuto, N., Klausner, R.D., Levine, R.L. and Rouault, T.A. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: Implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. U.S.A. 95 (1998) 4924-4928.
  • 4. Andrews, N.C. Iron homeostasis: insights from genetics and animal models. Nat. Rev. 1 (2000) 208-217.
  • 5. Venn, J.A.J., McCance, R.A. and Widdowson, E.M. Iron metabolism in piglet anaemia. J. Comp. Pathol. 57 (1947) 314-325.
  • 6. Lindt, F. and Blum, J.W. Occurrence of iron deficiency in growing cattle. Zentralbl Veterinarmed A. 41(1994) 237-246.
  • 7. Holter, P.H. and Refsum, H.E. Postnatal anemia and thrombocytosis in suckling rabbits: influence of delayed weaning and iron supplies. Pediatric Hematol. Oncol. 5 (1998) 157-168.
  • 8. O'Toole, D., Kelly E.J., McAllister M.M., Layton, A.W., Norrdin, R.W., Russell W.C., Saeb-Parsy K. and Walker P. Hepatic failure and hemochromatosis of Salers and Salers-cross cattle. Vet. Pathol. 38 (2001) 372-389.
  • 9. Kennedy, M.C., Mende-Mueller, L., Blondin, G.A. and Beinert, H. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc. Natl. Acad. Sci. USA 89 (1992) 11730-11734.
  • 10. Walden, W.E., Patino, M.M. and Gaffield, L. Purification of a specific repressor of ferritin mRNA translation from rabbit liver. J. Biol. Chem. 264 (1989) 13765-13769.
  • 11. Jarrige R. Ed. Alimentations des bovins, ovins et caprins, INRA, Paris (1988).
  • 12. Leibold, E.A. and Munro, H.N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5' untranslated region of ferritin heavy-and light-subunit mRNAs. Proc. Natl. Acad. Sci. USA 85 (1988) 21712175.
  • 13. Mülner, E.W., Neupert, B. and Kühn, L.C. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58 (1989) 373-382.
  • 14. Hentze, M.W., Rouault, T.A., Harford, J.B. and Klausner, R.D. Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science 244 (1989) 357-359.
  • 15. Drapier, J-C. and Hibbs, J.B.,Jr. Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Methods Enzymol. 269 (1996) 2636.
  • 16. Torrance, J. D. and Bothwell, T. H. Tissue iron stores. Methods Hematol. 1 (1980) 90-115.
  • 17. Thompson, J.D., Higgins, D.G. and Gibson, T.J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673-4680.
  • 18. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) 248-54.
  • 19. Rothenberger, S., Mullner, E.W. and Kühn, L.C. The mRNA-binding protein which controls ferritin and transferrin receptor expression is conserved during evolution. Nucleic Acids Res. 18 (1990) 1175-1179.
  • 20. Schalinske, K.L., Blemings, K.P., Steffen, D.W., Chen, O S. and Eisenstein, R.S. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line. Proc. Natl. Acad. Sci. U.S.A. 94(1997) 10681-10686.
  • 21. Festa, M., Collona, A., Pietropaolo, C. and Ruffo, A. Oxamalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron regulatory proteins. Biochem. J. 348 (2000) 315-320.
  • 22. Müllner, E.W., Rothenberger, S., Müller, A.M. and Kühn, L.C. In vivo and in vitro modulation of the mRNA-binding activity of iron-regulatory factor. Tissue distribution and effects of cell proliferation iron levels and redox state. Eur J. Biochem. 208 (1992) 597-605.
  • 23. Recalcati, S., Conte, D. and Cairo, G. Preferential activation of iron regulatory protein-2 in cell lines as a result of higher sensitivity to iron. Eur. J. Biochem. 259 (1999) 304-309.
  • 24. Georgieff, M.K., Berry, S.A., Wobken, J.D. and Leibold, E.A. Increased placental iron regulatory protein-1 expression in diabetic pregnancies complicated by fetal iron deficiency. Placenta 20 (1999) 87-93.
  • 25. Hanson, E.S., Foot, L.M. and Leibold, E.A. Hypoxia post-translationally activates iron-regulatory protein 2. J. Biol. Chem. 274 (1999) 5047-5052.
  • 26. Yu, Y., Radisky, E. and Leibold, E.A. The iron-responsive element binding protein. Purification, cloning, and regulation in rat liver. J. Biol. Chem. 267 (1992) 19005-19010.
  • 27. Hirling, H., Henderson, B.R. and Kühn, L.C. Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 13 (1994) 453-461.
  • 28. Philpott, C.C., Klausner, R.D. and Rouault, T. A. The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc. Natl. Acad. Sci. USA. 91 (1994) 7321-7325.
  • 29. Kaldy, P., Menotti, E., Moret, R. and Kühn, L.C. Identification of RNA-binding surfaces in iron regulatory protein-1. EMBO J. 18 (1999) 60736083.
  • 30. Robbins, A.H. and Stout, C.D. Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. Proc. Natl. Acad. Sci. USA 86 (1989) 3639-3643.
  • 31. Drapier, J.C., Hirling, H., Wietzerbin, J., Kaldy, P. and Kühn, L.C. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 12 (1993) 3643-3649.
  • 32. Lipiński, P., Drapier, J-C., Oliveira, L., Retmanska, H., Sochanowicz, B. and Kruszewski, M. Intracellular iron status as a hallmark of mammalian cell susceptibility to oxidative stress: a study of L5178Y mouse lymphoma cell lines differentially sensitive to H2O2. Blood 95 (2000) 2960-2966.
  • 33. Bourdon, E., Kang, D.K., Ghosh, M.C., Drake, S.K., Wey, J., Levine, R.L. and Rouault, T.A. The role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP2. Blood Cells Mol. Dis. 31 (2003) 247-255.
  • 34. Meyron-Holtz. E.G., Ghosh, M.C., Iwai, K., LaVaute, T., Brazzolotto, X., Berger, U.V., Land, W., Ollivierre-Wilson, H., Grinberg, A., Love, P. and Rouault, T.A. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 23 (2004) 386-395
  • 35. Meyron-Holtz, E.G., Vaisman, B., Cabantchik, Z.I., Fibach, E., Rouault, T.A., Hershko, C. and Konijn, A.M. Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritin. Blood 94 (1999) 3205-3211.
  • 36. Picard, V., Renaudie, F., Porcher, C., Hentze, M.W., Grandchamp, B. and Beaumont, C. Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution. Blood 87 (1996) 2057-2064.
  • 37. Bouton, C. Nitrosative and oxidative modulation of iron regulatory proteins. Cell. Mol. Life Sci. 55 (1999) 1043-1053.
  • 38. Fillebeen, C. and Pantopoulos, K. Redox control of iron regulatory proteins. Redox Rep. 7 (2002) 15-22.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5f8ed965-98d9-49c1-b10d-e35ca689c255
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.