PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 51 | 1 |

Tytuł artykułu

The mystery of reactive oxygen species derived from cell respiration

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mitochondrial respiration is considered to provide reactive oxygen species (ROS) as byproduct of regular electron transfer. Objections were raised since results ob­tained with isolated mitochondria are commonly transferred to activities of mito­chondria in the living cell. High electrogenic membrane potential was reported to trigger formation of mitochondrial ROS involving complex I and III. Suggested bioenergetic parameters, starting ROS formation, widely change with the isolation mode. ROS detection systems generally applied may be misleading due to possible interactions with membrane constituents or electron carriers. Avoiding these prob­lems no conditions reported to transform mitochondrial respiration to a radical source were confirmed. However, changing the physical membrane state affected the highly susceptible interaction of the ubiquinol/&C1 redox complex such that ROS for­mation became possible.

Wydawca

-

Rocznik

Tom

51

Numer

1

Opis fizyczny

p.223-229,fig.,ref.

Twórcy

autor
  • University of Veterinary Medicine Vienna, Veterinarplatz 1, A-1210 Vienna, Austria
autor
autor

Bibliografia

  • Boveris A, Oshino N, Chance B. (1972) The cellular production of hydrogen peroxide. Biochem J.; 128: 617-30.
  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti-Castelli G, Lenaz G. (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett.; 505: 364-8.
  • Gille L, Nohl H. (2001) The ubiquinol/bq redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys.; 388: 34-8.
  • Herrero A, Barja G. (1997) Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev.; 98: 95-111.
  • Kadenbach B, Arnold S. (1999) A second mechanism of respiratory control. FEBS Lett. ; 447: 131-4.
  • Korshunov SS, Skulachev VP, Starkov AA. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. ; 416: 15-8.
  • Lee I, Bender E, Kadenbach B. (2002) Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem.; 234-235: 63-70.
  • Liochev SI, Fridovich I. (1997) Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch Biochem Biophys. ; 337: 115-20.
  • Liu SS. (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep.; 17: 259-72.
  • Loschen G, Flohe L, Chance B. (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett.; 18: 261-4.
  • Mitchell P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. ; 41: 445-502.
  • Reid RA, Moyle J, Mitchell P. (1966) Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria. Nature.; 212: 257-8.
  • Rembish SJ, Trush MA. (1994) Further evidence that lucigenin-derived chemiluminescence monitors mitochondrial superoxide generation in rat alveolar macrophages. Free Radic Biol Med.; 17: 117-26.
  • Sastre J, Pallardo FV, Garcia de la Asuncion J, Vina J. (2000) Mitochondria, oxidative stress and aging. Free Radic Res.; 32: 189-98.
  • Schonheit K, Nohl H. (1996) Oxidation of cytosolic NADH via complex I of heart mitochondria. Arch Biochem Biophys.; 327: 319-23.
  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem.; 277: 44784-90.
  • Staniek K, Nohl H. (1999) H2O2 detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system. Biochim Biophys Acta.; 1413: 70-80.
  • Staniek K, Nohl H. (2000) Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta.; 1460: 268-75.
  • Votyakova TV, Reynolds IJ. (2001) DYm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. JNeurochem.; 79: 266-77.
  • Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH. (1998) Electron transfer by domain movement in cytochrome bq. Nature.; 392: 677-84.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5d6ae395-ae69-48b8-a1de-ce6eb5e27fb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.