PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 6 |

Tytuł artykułu

Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Activities of two de-V-glycosylation enzymes, PNGase (peptide V4(V-acetyl-glucosaminyl) asparagine amidase) and ENGase (endo V-acetyl-P-D-glucosaminidase), involved in the re-ease of N-glycans from V-glycoproteins, were mon- - tored in several organs of tomato plants (Lycopersicon esculentum, Mill., cv. Dombito) with a fluoeescence-HPLC procedure using a resofurin-labelled N-glycopeptide substrate. PNGase and ENGase activities were detected in every organ assayed but with quantitative differences. The highest activities were found in the youngest parts of the plant, i.e. apical buds, flowers and leaf blades. PNGase activities were consistently higher than ENGase activities (three-fold in average). Both de-V-glycosylation activities were associated with high levels of proteins and protease activities. During fruit growth and ripening, these three parameters decreased notably. The ubiquitous detection of these enzyme activities in the different organs is probably associated with the previously characterized unconjugated N-glycans in tomato. The possible role of PNGase and ENGase degradation products (i.e. unconjugated N-glycans) are discussed in relation with their biological functions in plant development.

Wydawca

-

Rocznik

Tom

28

Numer

6

Opis fizyczny

p.525-536,fig.,ref.

Twórcy

autor
  • Adam Mickiewicz University, Al.Niepodleglosci 14, 61-713 Poznan, Poland
autor

Bibliografia

  • Berger S., Menudier A., Julien R., Karamanos Y. 1995a. Do de-N-glycosylation enzymes have important roles in plant cells ? Biochimie, 77: 751-760.
  • Berger S., Menudier A., Julien R., Karamanos Y. 1995b. Endo-N-acetyl-fi-D-glucosaminidase and peptide-N4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus. Phytochemistry, 39: 481-487.
  • Berger S., Menudier A., Julien R., Karamanos Y. 1996. Regulation of de-N-glycosylation enzymes in germinating radish seeds. Plant Physiol., 112: 259-264.
  • Bourgerie S., Karamanos Y., Berger S., Julien R. 1992. Use of resorufin-labelled N-glycopeptide in a high-performance liquid chromatography assay to monitor endoglycosidase activities during cultivation of Flavobacterium meningosepticum. Glycoconj. J., 9: 162-167.
  • Bourgerie S., Berger S., Strecker G., Julien R., Karamanos Y. 1994. A fluorescence high-performance liquid chromatography assay for enzymes acting on the di-N-acetylchitobiosyl part of asparagine-linked glycans. J. Biochem. Biophys. Meth., 28: 283-293.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem., 72: 248-254.
  • Cacan R., Duvet S., Kmiecik D., Labiau O., Mir A.M., Verbert A. 1998. “Glyco-deglyco” processes during the synthesis of N-glycoproteins. Biochimie, 80: 59-68.
  • Callis J. 1995. Regulation of protein degradation. Plant Cell, 7: 845-857.
  • Chang T., Kuo M.C., Khoo K.H., Inoue S., Inoue Y. 2000. Developmentally regulated expression of a peptide :N-glycanase during germination of rice seeds (Oryza sativa) and its purification and characterization. J. Biol. Chem., 275: 129-134.
  • Faugeron C., Lhernould S., Maes E., Lerouge P., Strecker G., Morvan H. 1997a. Tomato plant leaves also cont ain unconjugated N-glycans. Plant Physiol. Biochem., 35: 73-79.
  • Faugeron C., Lhernould S., Lemoine J., Costa G., Morvan H. 1997b. Identification of unconjugated N-glycans in strawberry plants. Plant Physiol. Biochem., 35: 891-895.
  • Faugeron C., Sakr S., Lhernould S., Michalski J.C., Delrot S., Morvan H. 1999. Long-distance transport and metabolism of unconjugated N-glycans in tomato plants. J. Exp. Bot., 50: 1669-1675.
  • Ho L.C., Shaw A.F. 1977. Carbon economy and translocation of 14C in leaflets of the seventh leaf during leaf expansion. Ann. Bot., 41: 833-848.
  • James F., Brouquisse R., Pradet A., Raymond P. 1993. Changes in proteolytic activities in glueose - -starved maize root tips. Regulation by sugars. Plant Physiol. Biochem. 31: 845-856.
  • Kimura Y, Takagi S, Shiraishi T. 1997. Occurence of free N-glycans in pea (Pisum sativum L.) seedings. Biosci., Biotech. Biochem., 61: 924-926.
  • Kimura Y., Kitahara E. 2000. Structural analysis of free N-glycans occurring in soybean seedlings and dry seeds. Biosci., Biotech. Biochem., 64: 1847-55.
  • Kimura Y., Matsuo S. 2000. Free N-glycans already occur at an early stage of seed development. J. Biochem., 127: 1013-1019.
  • Kimura Y., Matsuo S., Tsurusaki S., Kimura M., Hara-Nishimura I., Nishimura M. 2002. Subcellular localization of endo-P-N-acetylglucosaminidase and high-mannose type free N-glycans in plant cell. Biochem. Biophys. Acta, 1570: 38-46.
  • Lerouge P., Cabanes-Macheteau M., Rayon C., Fitchette-Laine A.C., Gomord V., Faye L. 1998. N-glycoprotein biosynthesis in plants : recent developments and future trends. Plant Mol. Biol., 38: 31-48.
  • Lhernould S., Karamanos Y., Bourgerie S., Strecker G., Julien R., Morvan H. 1992. Peptide-N4-(Nacetyl-glucosaminyl)asparagine amidase (PNGase) activity could explain the occurrence of extracellular xylomannosides in a plant cell suspension. Glycoconj. J., 9: 191-197.
  • Lhernould S., Karamanos Y., Priem B., Morvan H. 1994. Carbon starvation increases endoglycosidase activities and production of unconjugated N-glycans in silene alba cell suspension cultures. Plant Physiol., 106 : 779-784.
  • Pressman E., Bar-Tal A., Shaked R., Rosenfeld K. 1997. The development of tomato root system in relation to the carbohydrate status of the whole plant. Ann. Bot., 80: 533-538.
  • Priem B., Solo-Kwan J., Wieruszeski J.M., Strecker G., Nazih H., Morvan H. 1990. Isolation and characterization of free glycans of the oligomannoside type from the extracellular medium of a plant cell suspens ion. Glycoconj. J., 7: 121-132.
  • Priem B., Gitti R., Bush C.A., Gross K.C. 1993. Structure of ten free N-glycans in ripening tomato fruit. Plant Physiol., 102: 445-458.
  • Priem B., Morvan H., Gross KC. 1994. Unconjugated N-glycans as a new class of plant oligosaccharins. Biochem. Soc. Trans., 22: 398-402.
  • Ramis C., Gomord V., Lerouge P., Faye L. 2001. Deglycosylation is necessary but not sufficient for activation ofproconcanavalin A. J. Exp. Bot., 52: 911-917.
  • Sheldon P.S., Bowles D.J. 1992. The glycoprotein precursor of concanavalin A is converted to an active lectin by deglycosylation. EMBO J., 11: 1297-1301.
  • Vuylstecker C., Cuvellier G., Berger S., Faugeron C., Karamanos Y. 2000. Evidence of two enzymes performing the de-N-glycosylation of proteins in barley : expression during germination, localization within the grain and set-up during grain formation. J. Exp. Bot., 51: 839-845.
  • Yet M.G., Wold F. 1988. Purification and characterization of glycopeptide hydrolases from Jack Bean. J. Biol. Chem., 263: 118-122.
  • Yunovitz H., Norman Livsey J., Gross K.C. 1996. Unconjugated MansGlcNAc occurs in vegetative tissues of tomato. Phytochemistry, 42: 607-610.
  • Zeleny R., Altmann F., Praznik W. 1999. Struc-ural characterization of the N-linked oligosaccharides from tomato fruit. Phytochemistry, 51: 19-210.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5c1728ee-fc4a-496c-a702-32be962a7fc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.