PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2006 | 65 | 4 |

Tytuł artykułu

The pathophysiology of intracerebral haemorrhage

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Spontaneous intracerebral haemorrhage carries a high mortality rate and treatment of the disease raises more questions then answers. Mass effect, ischaemia and toxicity of blood components are responsible for brain tissue damage. Initially occurring disturbances of cerebral blood flow have a temporary character and do not play a key role in the pathology of intracerebral haematoma. Oedema formatting in the 24–48 hours after intracerebral bleeding is the result of multidirectional processes. The pathological mechanism that underlines it is the function of activation of systemic complement and cascade of coagulation. In the light of these findings, further clinical and experimental investigations should be focused on these factors.

Wydawca

-

Czasopismo

Rocznik

Tom

65

Numer

4

Opis fizyczny

p.295-300,fig.,ref.

Twórcy

autor
  • Medical University of Gdansk, Debinki 7, 80-021 Gdansk, Poland
autor
autor
autor
autor

Bibliografia

  • 1. Acarin L, Gonzales B, Castellano B (2001) Glial activation in the immature rat brain: implication of inflammatory transcription factors and cytokine expression. In: Castellano-Lopez B, Nieto-Sampedro M (eds.). Glial cell function. Elsevier, Amsterdam, London, New York, Oxford, Paris, Shanon, Tokyo, pp. 375–389.
  • 2. Acarin L, Gonzalez B, Castellano B (2000) Neuronal, astroglial, and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci, 12: 3505–3520.
  • 3. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. A prospective study of acute cerebrovascular disease in the community: the Oxfordshire Community Stroke Project, 1981–1986, 2: incidence, case fatality rates and overall outcome at one year of cerebral infarction, primary intracerebral and subarachnoid haemorrhage. J Neurol Neurosurg Psychiatr, 1990; 53: 22–27.
  • 4. Bhakdi S, Tranum-Jensen J (1984) On the cause and nature of C9-related heterogeneity of terminal complement complex generated on target erythrocytes through the action of whole serum. J Immunol, 133: 1453–1463.
  • 5. Broderick J, Brott T, Tomsick T, Tew J, Duldner J, Huster G. Management of intracerebral hemorrhage in a large metropolitan population. Neurosurgery, 1994; 34: 882–887.
  • 6. Cechetto DF (2001) Role of nuclear factor kappa B in neuropathological mechanisms. In: Castellano-Lopez B, Nieto-Sampedro M (eds.). Glial Cell Function. Elsevier, Amsterdam, London, New York, Oxford, Paris, Shanon, Tokyo pp. 392–404.
  • 7. De Michele MA, Minnear FL (1992) Modulation of vascular endothelial permeability by thrombin. Semin Thromb Hemostat, 18: 287–295.
  • 8. Gong Ch, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF (2001) Intracerebral hemorrhage-induced neuronal death. Neurosurgery, 48: 875–880.
  • 9. Gordon CR, Merchant RS, Marmarou A (1990) Effect of murine recombinant interleukin-1 on brain oedema in the rat. Acta Neurochir Suppl, 51: 268–270.
  • 10. Hickenbottom SL, Grotta JC, Strong R, Denner LA, Aronowski J (1999) Nuclear factor kappa B and cell death after experimental intracerebral hemorrhage in rats. Stroke, 30: 2472–2477.
  • 11. Holmin S, Mathiesen T (2000) Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg, 92: 108–120.
  • 12. Hua Y, Xi G, Keep RF, Hoff JT (2000) Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg, 92: 1016–1022.
  • 13. Huang F-P, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg, 96: 287–293.
  • 14. Jelinger K (1980) Pathology and aethiology of supratentorial haemorrhage. In: Pia HW, Langmaid C, Zierski J (eds.). Spontaneous intracerebral haematomas. Advances in diagnosis and therapy. Springer-Verlag, Berlin, Heidelberg, New York, pp. 131–135.
  • 15. Jones LL, Kreutzberg GW, Raivich G (1998) Transforming growth factor betas 1, 2 and 3 inhibit proliferation of ramified microglia on an astrocyte monolayer. Brain Res, 795: 301–306.
  • 16. Karwacki Z, Kowiański P, Dziewiątkowski J, Domaradzka-Pytel B, Ludkiewicz B, Wójcik S, Narkiewicz O, Moryś J (2005) Apoptosis in the course of experimental intracerebral haemorrhage in the rat. Folia Morphol, 64: 248–252.
  • 17. Karwacki Z, Kowiański P, Dziewiątkowski J, Domaradzka-Pytel B, Ludkiewicz B, Wójcik S, Narkiewicz O, Moryś J (2005) The influence of sevoflurane on the reactivity of astrocytes in the course of experimental intracerebral haemorrhage in rat. J Physiol Pharmacol, 56: 455–469.
  • 18. Kowiański P, Karwacki Z, Dziewiątkowski J, Domaradzka-Pytel B, Ludkiewicz B, Wójcik S, Litwinowicz B, Narkiewicz O, Moryś J (2003) Evolution of microglial and astroglial response during experimental intracerebral haemorrhage in rat. Folia Neuropathol, 41: 123–130.
  • 19. Lee KR, Colon GP, Betz AL, Keep RE, Kim S, Hoff JT (1996) Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg, 84: 91–96.
  • 20. Lee KR, Kawai N, Kim S, Sagher O, Hoff JT (1997) Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in rat model. J Neurosurg, 86: 272–278.
  • 21. Malik AB, Fenton JW (1992) Thrombin mediated increase in vascular endothelial permeability. Semin Thromb Hemostat, 18: 193–199.
  • 22. Massague J (1990) The transforming growth factor beta family. Annu Rev Cell Biol, 6: 597–641.
  • 23. McLaughlin MR, Marion DW (1996) Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J Neurosurg, 85: 871–876.
  • 24. Megyeri P, Abraham CS, Temesvari P (1992) Recombinant human tumor necrosis factor alpha constricts pial arterioles and increases blood-brain barrier permeability in newborn piglets. Neurosci Lett, 148: 137–140.
  • 25. Nath FP, Kelly PT, Jenkins A, Mendelov AD, Graham DI, Teasdale GM (1987) Effects of experimental intracerebral hemorrhage on blood flow, capillary permeability, and histochemistry. J Neurosurg, 66: 555–562.
  • 26. Nehls DG, Mendelow AD, Graham DI, Sinar EJ, Teasdale GM (1988) Experimental intracerebral hemorrhage: progression of hemodynamic changes after production of a spontaneous mass lesion. Neurosurgery, 23: 439–444.
  • 27. Norenberg MD (1994) Astrocyte response to CNS injury. J Neuropathol Exp Neurol, 53: 213–220.
  • 28. Pearson VL, Rothwell NJ, Toulmond S (1999) Excitotoxic brain damage in the rat induces interleukin-1 beta protein in microglia and astrocytes; correlation with the progression of cell death. Glia, 25: 311–323.
  • 29. Qureshi AI, Suri MFK, Ling GSF, Khan J, Guterman LR, Hopkins LN (2001) Absence of early proinflammatory cytokine expression in experimental intracerebral hemorrhage. Neurosurgery, 49: 416–419.
  • 30. Qureshi AI, Wilson DA, Hanley DF, Traystman RJ (1999) No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology, 52: 266–272.
  • 31. Rohde V, Rohde I, Thiex R, Ince A, Jung A, Duckers G, Groschel K, Rottger C, Kruker W, Muller HD, Gilsbach JM (2002) Fibrinolysis therapy achieved with tissue plasminogen activator and aspiration of the liquefied clot after experimental intracerebral hemorrhage: rapid reduction in hematoma volume but intensification of delayed edema formation. J Neurosurg, 97: 954–962.
  • 32. Silva Y, Leira R, Tejada J, Leinez JM, Castillo J, Davalos A (2005) Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke, 36: 86–91.
  • 33. Sinar EJ, Mendelov D, Graham DI, Path FRC, Teasdale GM (1987) Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg, 66: 568–576.
  • 34. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation; a confocal time-lapse analysis in hippocampal slices. Glia, 33: 256–266.
  • 35. Tikka TM, Koistinaho JE (2001) Minocycline provides neuroprotection against N-Methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol, 166: 7527–7533.
  • 36. Tikka T, Bernd L, Fiebich B, Gundars L, Goldsteins G, Riitta W, Keinänen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci, 21: 2580–2588.
  • 37. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE (1998) Early metabolic alteration in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg, 80: 1058–1065.
  • 38. Wagner KR, Xi G, Hua Y, Zuccarello M, de CourtenMyers GM, Broderick JP, Brott TG (1999) Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection. J Neurosurg, 90: 491–498.
  • 39. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. J Neurosurg, 5: 53–63.
  • 40. Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Borderick JP, Brott TG, Hoff JT (1998) Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke, 29: 2580–2586.
  • 41. Xi G, Hua Y, Bhasin R, Emis SR, Keep RF, Hoff JT (2001) Mechanisms of edema formation after intracerebral hemorrhage. Effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke, 32: 2932–2938.
  • 42. Xi G, Hua Y, Keep RF, Younger JG, Hoff JT (2001) Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke, 32: 162–170.
  • 43. Xiao F (2002) Brain edema and cerebral resuscitation: the present and future. Acad Emerg Med, 9: 993–945.
  • 44. Xue M, Del Bigio MC (2000) Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett, 283: 230–232.
  • 45. Yang G-Y, Betz AL, Chenevert TL, Brunberg JA, Hoff JT (1994) Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and bloodbrain barrier permeability in rats. J Neurosurg, 81: 93–102.
  • 46. You Y, Kaur C (2000) Expression of induced nitric oxide synthase in amoeboid microglia in postnatal rats following an exposure to hypoxia. Neurosci Lett, 279: 101–104.
  • 47. Zazulia AR, Diringer MN, Videen TO, Adams RE, Yundt K, Aiyagari V, Grubb RL, Powers WJ (2001) Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab, 21: 804–810.
  • 48. Zazulia AR, Diringer MN, Derdeyn CP (1999) Progression of mass effect after intracerebral hemorrhage. Stroke, 30: 1167–1173.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5b528508-2f90-45ee-b161-b3359f24a935
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.