PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 4 |

Tytuł artykułu

Possible evolution of factors involved in protein biosynthesis

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The elongation factors of protein biosynthesis are well preserved through out evolution. They catalyze the elongation phase of protein biosynthesis, where on the ribosome amino acids are added one at a time to a growing peptide according to the genetic information transcribed into mRNA. Elongation factor Tu (EF-Tu) provides the binding of aminoacylated tRNA to the ribosome and protects the aminoester bond against hydrolysis until a correct match between the codon on mRNA and the anticodon on tRNA can be achieved. Elongation factor G (EF-G) supports the translocation of tRNAs and of mRNA on the ribosome so that a new codon can be exposed for decoding. Both these factors are GTP binding proteins, and as such exist in an active form with GTP and an inactive form with GDP bound to the nucleotide binding domain. Elongation factor Ts (EF-Ts) will catalyze the exchange of nucleotide on EF-Tu. This review describes structural work on EF-Tu performed in our laboratory over the last eight years. The structural results provide a rather complete picture of the major structural forms of EF-Tu, including the so called ternary complex of aa-tRNA:EF-Tu:GTP. The structural comparison of this ternary complex with the structure of EF-G:GDP displays an unexpected macromolecular mimicry, where three domains of EF-G mimick the shape of the tRNA in the ternary complex. This observation has initiated much speculation on the evolution of all factors involved in protein synthesis, as well as on the details of the ribosomal function in one part of elongation.

Wydawca

-

Rocznik

Tom

45

Numer

4

Opis fizyczny

p.883-894,fig.

Twórcy

autor
  • University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark

Bibliografia

  • Abdulkarim, F., Liljas, L. & Hughes, D. (1994) Mu­tations to kirromycin resistance occur in the interface of domains I and III of EF-Tu GTP. FEBS Lett. 352, 118-122.
  • Abel, K. & Jurnak, F. (1996) A complex profile of protein elongation: Translating chemical en­ergy into molecular movement Structure 4, 229-238.
  • Abel, K., Yoder, M.D., Hilgenfeld, R. & Jurnak, F. (1996). An a tofi conformational switch in EF- Tu. Structure 4, 1153-1159.
  • AEvarsson, A. (1995) Structure-based sequence alignment of elongation factor Tu and G with related GTPases involved in translation. J. MoL EvoL 41, 1096-1104.
  • Al-Karadaghi, S., /Evarsson, A., Garber, M., Zhel- tonosova, J. & Liljas, A. (1996) The structure of elongation factor G in complex with GDP: Conformational flexibility and nucleotide ex­change. Structure 4, 555-565.
  • Arcari, P., Gallo, M., Ianniciello, G., Dello Russo, A. & Bocchini, V. (1993) Primary structure of the elongation factor la in Sulfolobus solfcv- taricus. Nudtic Acids Res. 21, 1666.
  • Bairoch, A. & Apweiler, R. (1998) The SWISS- PROT protein sequence data bank and its sup­plement TrEMBL in 1998. Nucleic Acids Res. 26, 38-42.
  • Basavappa. R. & Sigler, P.B. (1991) The 3 A crys­tal structure of yeast initiator tRNA: Func­tional implications in initiator/elongator dis­crimination. EMBO J. 10, 3105-3111.
  • Berchtold, H., Reshetnikova, L., Reiser, C.O.A., Schirmer, N.K., Sprinzl, M. & Hilgenfeld, R. (1993) Crystal structure of active elongation factor Tu reveals major domain rearrange­ments. Nature 365. 126-132.
  • Bourne, H.R., Sanders, D.A. & McCormick, F. (1990) The GTPase superfamily: A conserved switch for diverse cell functions. Nature 348, 125-132.
  • Bourne, H.R., Sanders, D.A. & McCormick, F. (1991) The GTPase superfamily: Conserved structure and molecular mechanism. Nature 349, 117-127.
  • Brands, J.H., Maassen, J.A., van Hemert, F.J., Amons, R. & Moller, W. (1986) The primary structure of the alpha subunit of human elon­gation factor 1. Structural aspects of guanine- nucleotide-binding sites. Eur. J. Biochem. 155, 167-171.
  • Clark, B.F.C., Kjeldgaard, M., Barciszewski, J. & Sprinzl, M. (1995) Recognition of aminoacyl- tRNAs by protein elongation factors; in tRNA: Structure, Biosynthesis and Function (Soil, S. & RajBhandary, U., eds.) pp. 423-442, Ameri­can Society for Microbiology Press, Washing­ton, DC.
  • Cottrelle, P., Thiele, D., Price, V.L., Memet, S., Micouin, J.-Y., Marck, C., Buhler, J.-M., Sente- nac, A. & Fromageot, P. (1985) Cloning, nu­cleotide sequence, and expression of one of two genes coding for yeast elongation factor 1 alpha. J. Biol Chenu 260, 3090-3096.
  • Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. (1994) The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolu­tion. EMBO J. 13, 3661-3668.
  • Duffy, L., Gerber, L., Johnson, A.E. & Miller, D.L. (1981) Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu. Biochem­istry 20, 4663-4666.
  • Faulhammer, H.G. & Joshi, R.L. (1987) Struc­tural features in aminoacyl-tRNAs required for recognition by elongation factor Tu. FEBS Lett. 217, 203-211.
  • Fujita, T. & Itoh, T. (1995) Organization and nu­cleotide sequence of a gene cluster comprising the translation elongation factor 1 alpha, ribo- somal protein S10 and tRNA(Ala) from Halo- bacterium hclobium. Biochem. Mol. Biol. Int. 37, 107-115.
  • Jack, A., Ladner, J.E. & Klug, A. (1976) Crystallo- graphic refinement of yeast phenylalanine transfer RNA at 2.5 À resolution. J. Mol Biol. 108. 619-649.
  • Johanson, U., Aevarsson, A., Liljas, A. & Hughes, D. (1996) The dynamic structure of EF-G stud­ied by fusidic acid resistance and internal re- vertants. J. Mol Biol 258, 420-432.
  • Jones, M.D., Petersen, T.E., Nielsen, K.M., Mag- nusson, S., Sottrui>Jensen, L., Gausing, K. & Clark, B.F.C. (1980) The complete amino-acid sequence of elongation factor Tu from Escheri­chia coli. Eur. ,J. Biochem. 108, 507- 526.
  • Kawashima, T., Berthet>Colominas, C., Wulff, M., Cusack, S. & Leberman, R. (1996) The struc­ture of the Escherichia coli EF-Tu:EF-Ts com­plex at 2.5 A resolution. Nature 379,511-518.
  • Kaziro, Y. (1978) The role of guanosine 5-tri- phosphate in polypeptide elongation. Biochim. Biophys. Acta 505, 95-127.
  • Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. (1993) The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35-50.
  • Kjeldgaard, M., Nyborg, J. & Clark, B.F.C. (1996) The GTP-binding motif — variations on a theme. FASEB J. 10, 1347-1368.
  • Kraulis, P.J. (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst 24, 946- 950.
  • Kristensen, O., Reshetnikova, L., Nissen, P., Si- boska, G., Thirup, S. & Nyborg, J. (1996) Iso­lation, crystallization and X-ray analysis of the quaternary complex of Phe-tRNAPhe, EF-Tu, aGTP analog and kirromycin. FEBS Lett 399, 59-62.
  • Liljas, A. (1996) Protein synthesis: Imprinting through molecular mimicry. Curr. Biol 6, 247- 249.
  • Merrick, W.C. (1994) Eukaryotic protein synthe­sis: An in vitro analysis. Biochimie 76, 822- 830.
  • Miller, D.L. & Weissbach, H. (1977) Factors in­volved in the transfer of aminoacyl-tRNA to the ribosome; in Molecular Mechanisms of Pro­tein Biosynthesis (Weissbach, H. & Petska, S., eds.) pp. 323-373, Academic Press, New York.
  • Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B.F.C. & Nyborg, J. (1995) Crystal structure of the ternary com­plex of Phe-tRNAPbe, EF-Tu, and a GTP ana­log. Science 270, 1464-1472.
  • Nyborg, J., Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Clark, B.F.C. & Reshetnikova, L. (1996) Structure of the ternary complex of EF-Tu: Macromolecular mimicry in transla­tion. Trends Biochem. Sei. 21, 81-82.
  • Polekhina, G., Thirup, S., Kjeldgaard, M., Nissen, P., Lippmann, C. & Nyborg, J. (1996) Helix unwinding in the effector region of elongation factor EF-Tu:GDP. Structure 4, 1141-1151.
  • Stark, H., Rodnina, M.V., Rinke-Appel, J., Brima- combe, R.. Wintermeyer, W. & van Heel, M. (1997) Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403-406.
  • Thirup, S. & Larsen, N.E. (1990) ALMA, An edi­tor for large sequence alignments. Proteins: Struct Fund Genet 7, 291-295.
  • Voss, R.H., Hartmann, R.K., Lippmann, C., Alex­ander, C., Jahn, 0. & Edermann, V.E. (1992) Sequence of the tufA gene encoding elonga­tion factor EF-Tu from Thermus aquaticus and overproduction of the protein in Escherichia coli. Eur. J. Biochem. 207, 839-846.
  • Wang, Y., Jiang, Y., Meyering-Voss, M., Sprinzl, M. & Sigler, P.B. (1997) Crystal structure o the EF-Tu:EF-Ts complex from Themius ther-mophilus. Nature Struct. Biol. 4, 650-656.
  • Woriax, V.L., Burkhart, W.A. & Spremulli, L.L. (1995) Cloning, sequence analysis and expres­sion of mammalian mitochondrial protein synthesis elongation factor Tu. Biochim. Bio- phys. Acta 1264, 347-356.
  • Zhouravleva, G., Frolova, L., Le Goff, X., Le Guel-lec, R., Inge-Vechtomov, S., Kisselev, L. & Philippe, M. (1995) Termination of transla­tion in eukaryotes is governed by two interact­ing polypeptide chain release factors, eRFl and eRF3. EMBO J. 14, 4065-4072.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5b0573f9-5e39-454e-a7ec-b9631bc3f240
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.